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We find the asymptotic representation of the solution of the variable-order fractional diffusion equation,
which remains unsolved since it was proposed by Chechkin, Gorenflo, and Sokolov [J. Phys. A, 38, L679
(2005)]. We identify a new advection term that causes ultraslow spatial aggregation of subdiffusive
particles due to dominance over the standard advection and diffusion terms in the long-time limit. This
uncovers the anomalous mechanism by which nonuniform distributions can occur. We perform
Monte Carlo simulations of the underlying anomalous random walk and find excellent agreement with
the asymptotic solution.
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Anomalous diffusion has attracted immense interest in the
past due tomany physical, chemical and biological processes
characterized by themean square displacement involving the
fractional exponent μ: hx2ðtÞi ∝ tμ [1–6]. Anomalous dif-
fusion is also observed in many other areas, for instance, in
finance and economics [7]. An influential paper by Metzler
and Klafter [2] reviews anomalous diffusion in the scope
of a constant exponent μ. However, anomalous transport in
realistic inhomogeneous and complex environments [8],
such as lipid granules [9], porous media [10] and entangled
polymer liquids [11], requires a multifractional approach
involving the space-dependent variable-order fractional
exponent [12–18]. Important examples of anomalous trans-
port involving multifractional exponents are lateral diffusion
of proteins on crowded lipid membranes [19], intracellular
subdiffusion of proteins [20], messenger RNA molecules
[21] and organelles [22] due in part to inhomogeneous
crowding [23], and weak interactions between components
in the cell [24]. Recent observations show that lysosomes,
which are key organelles for cellular metabolism, predomi-
nantly move subdiffusively and maintain a nonuniform
spatial distribution in the cell [24]. The majority of these
organelles are concentrated in the perinuclear area. A
fundamental unresolved question is how lysosomes are
self-organized spatially to coordinate their roles [24]. In this
Letter, we propose a new anomalous mechanism by which
nonuniformdistribution of subdiffusing organelles can occur.
A generic model for anomalous diffusion in inhomo-

geneous media is the space-dependent variable-order frac-
tional diffusion equation [12–16]

∂pðx; tÞ
∂t ¼ ∂2

∂x2 ½DμðxÞD
1−μðxÞ
t pðx; tÞ�; ð1Þ

where pðx; tÞ is the probability density function (PDF) of a
particle at position x and time t. This function can also be

interpreted as the mean number density of subdiffusive

particles. In Eq. (1), DμðxÞ ¼ a2=2τμðxÞ0 is the fractional
diffusion coefficient with the microscopic time scale τ0,
length scale a, and space-dependent fractional exponent
μðxÞ ∈ ð0; 1Þ. The Riemann-Liouville derivative

D1−μðxÞ
t pðx; tÞ ¼ 1

Γ(μðxÞ)
∂
∂t

Z
t

0

pðx; t0Þ
ðt − t0Þ1−μðxÞ dt

0; ð2Þ

also involves spatial dependence. Equation (1) was first
derived by Chechkin, Gorenflo, and Sokolov [12], and
since then, many attempts have been made to find a
solution through composite regions with constant anoma-
lous exponents and numerically [12,14,25]. However,
Eq. (1) remains unsolved for the general case of a
space-dependent anomalous exponent μðxÞ.
In this Letter, we find the asymptotic representation of

the solution of the space-dependent variable-order frac-
tional diffusion equation (1) for a monotonically increasing
fractional exponent. In the long-time limit, we obtain the
normalized density

pðx; tÞ ∼
μ00ð t

τ0
Þ−ΔμðxÞ

Γ(1 − ΔμðxÞ)
�
ln

�
t
τ0

�
− ψ0(1 − ΔμðxÞ)

�
: ð3Þ

This asymptotic density is in the domain 0 < x < Lwith re-
flective boundary conditions, subject to μ00¼ðdμ=dxÞð0Þ≠0,
whereΔμðxÞ ¼ μðxÞ − μð0Þ and ψ0ðxÞ ¼ Γ0ðxÞ=ΓðxÞ is the
digamma function. For linearly increasing μðxÞ, we have
ΔμðxÞ ¼ μ00x and μ00 ¼ ½μðLÞ − μð0Þ�=L. The unsteady
nonuniform distribution (3) for t ¼ 104 is illustrated by
the dashed line in Fig. 1.
The unusual feature of this unsteady representation is

that it describes ultraslow formation of a nonuniform
distribution of subdiffusive particles (spatial aggregation).
It follows from (3) that pðx; tÞ at x ¼ 0 is μ00½lnðt=τ0Þ þ γ�
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where γ is the Euler-Mascheroni constant, which results in
ultraslow aggregation at the minimum value of μðxÞ as seen
in Fig. 1. In fact, pðx; tÞ tends to delta function δð0Þ [15],
but it takes an extremely long time due to the logarithmic
growth.
This asymptotic behavior of the solution (3) can be

explained by the anomalous continuous time random walk
(CTRW) where the fractional exponent μðxÞ is a measure of
the trapping strength. This is because the waiting time
density of underlying random walkers is given by ψðτ; xÞ∼
1=τ1þμðxÞ, and so, the smaller the value of μðxÞ, the more
likely that the random walker at point x waits longer until
the next jump. Therefore, it is expected that, eventually,
the randomwalkers become trapped in the position with the
lowest μðxÞ [14,15]. The ultraslow relaxation is due to the
fractional exponent μðxÞ changing in a continuous fashion.
This behavior is fundamentally different from the stan-

dard formation of nonuniform distributions described by
steady-state solutions for advection-diffusion equations
[26,27]. In particular, the Markovian analog of Eq. (1),
∂p=∂t ¼ ∂2=∂x2½DðxÞp� [see (17) in [27]], under reflect-
ing boundary conditions, has a stationary solution of
pðxÞ ¼ A=DðxÞ, where A is the normalization constant.
This nonuniform steady-state solution occurs as a result of
balance between the drift (advection) term ½∂DðxÞ=∂x�p
and diffusion DðxÞ∂p=∂x.
However, for Eq. (1), the mechanism for formation of a

nonuniform distribution is very different. To elucidate the
origin of this anomalous mechanism, we rewrite Eq. (1) in
the form ∂p=∂t ¼ −∂J=∂x with the flux

Jðx; tÞ ¼ −
∂
∂x

�
a2

2τμðxÞ0

1

Γ(μðxÞ)
∂
∂t

Z
t

0

pðx; t0Þ
ðt − t0Þ1−μðxÞ dt

0
�
:

By differentiating with respect to x, one can obtain the flux
Jðx; tÞ as a combination of spatially varying advection and
diffusion terms. Explicitly,

Jðx; tÞ ¼ dμ
dx

lnðτ0ÞDμðxÞD
1−μðxÞ
t pðx; tÞ

þ ψ0(μðxÞ)
dμ
dx

DμðxÞD
1−μðxÞ
t pðx; tÞ

−
dμ
dx

DμðxÞ
1

ΓðμÞ
∂
∂t

Z
t

0

ln ðt − t0Þ
ðt − t0Þ1−μ pðx; t

0Þdt0

−DμðxÞD
1−μðxÞ
t

∂pðx; tÞ
∂x : ð4Þ

Then, combining the logarithms in the first and third term
and defining a fractional operator U1−μ

t p, we can write
more neatly

Jðx; tÞ ¼ −DμðxÞD
1−μðxÞ
t

∂p
∂x

−DμðxÞ
dμ
dx

½U1−μðxÞ
t p − ψ0(μðxÞ)D1−μðxÞ

t p�: ð5Þ

Here, D1−μðxÞ
t is the same operator as in (1), ψ0ð·Þ is the

digamma function, and U1−μðxÞ
t p is a fractional operator

defined as

U1−μðxÞ
t p ¼ 1

Γ(μðxÞ)
∂
∂t

Z
t

0

ln ½ðt − t0Þ=τ0�
ðt − t0Þ1−μðxÞ pðx; t0Þdt0: ð6Þ

This operator occurs as a result of the space-dependent
fractional exponent μðxÞ. One can see that it is a modifi-
cation of the Riemann-Liouville derivative with a loga-
rithmic factor in the memory kernel ln ½ðt − t0Þ=τ0�. The
Laplace transform of U1−μ

t p can be found by using the
convolution theorem and the formula LflnðtÞ=t1−μg ¼
ΓðμÞ½ψ0ðμÞ − lnðsÞ�=sμ (see [28], p. 573)

LfU1−μ
t pg ¼ ½ψ0ðμÞ − lnðτ0sÞ�s1−μp̂ðx; sÞ: ð7Þ

We should note that the flux Jðx; tÞ in (5) results from a
choice of fractional diffusion equation (1), which is not
unique. The form of the coarse-grained fractional equations
depend on the microscopic picture of the underlying
random walk (see a similar discussion for the Markovian
case in Refs. [26,27]). To illustrate how the fractional
equation changes due to underlying microscopic mecha-
nisms, consider symmetric anomalous random walks on a
lattice, with spacings of size a. The master equation for the
probability Pðx; tÞ at position x ¼ ja ðj ∈ ZÞ and time t is
∂P=∂t¼−iðx;tÞþ iðx−a;tÞ=2þ iðxþa;tÞ=2, where the
escape rates iðx; tÞ from a trap at x is defined as [15]

FIG. 1. Asymptotic density (3) (dashed line) and normalized
histograms corresponding to simulation of N ¼ 104 particles
jumping between k ¼ 50 bins in the domain 0 ≤ x ≤ 1 with fra-
ctional exponent μðxÞ ¼ 0.4þ 0.5x and τ0 ¼ 10−3. In this simu-
lation, ri ¼ 0.5. The legend shows simulation times, t, at which
snapshots of the distribution of particles were produced. Inset:
Time series of number of particles Nðx; tÞ at specific x positions
for the same simulation in the main figure. The plot at x ¼ 0
clearly shows logarithmic growth as predicted by solution (3).
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iðx; tÞ ¼ 1

τμðxÞ0

D1−μðxÞ
t Pðx; tÞ. ð8Þ

In the limit a → 0 and τ0 → 0 such that DμðxÞ ¼ a2=2τμðxÞ0

is finite, we obtain fractional diffusion equation (1).
However, if we introduce escape rates i�ðx; tÞ on the right
(þ) and the left (−), depending on the barriers at x� a=2,
then the corresponding master equation is

∂Pðx; tÞ
∂t ¼ −i−ðx; tÞ− iþðx; tÞ þ i−ðxþ a; tÞ þ iþðx− a; tÞ;

ð9Þ

where

i�ðx; tÞ ¼ 1

2τμðx�a=2Þ
0

D1−μðx�a=2Þ
t Pðx; tÞ: ð10Þ

In the continuous limit as a → 0 and as τ0 → 0, we obtain
from the master equation (9) the fractional diffusion
equation of the form

∂pðx; tÞ
∂t ¼ ∂

∂x
�
DμðxÞD

1−μðxÞ
t

∂p
∂x

�
; ð11Þ

and the flux is Jðx; tÞ ¼ −DμðxÞD
1−μðxÞ
t ∂pðx; tÞ=∂x. Clearly,

there is no advection for this case and, instead of our solution
(3),pðx; tÞ tends to a uniform distribution 1=L as t → ∞. So
the conclusion is that for the space-dependent anomalous
exponent, we cannot rely on phenomenological arguments
and needmicroscopic randomwalkmodels to determine the
coarse-grained fractional governing equations. A similar
situation occurs when the Fokker-Planck equation is derived
from the Langevin equationwithmultiplicative noise [29]. It
follows, from solution (3), that fractional equation (1)
describes anomalous transport in nonequilibrium systems,
for which long-time behavior does not correspond to
Boltzmann equilibrium.
For positive values of ðdμ=dxÞ, the advection term in (5)

encapsulates the drift of particles towards the region of
lowest μðxÞ. The surprising property of this advection term
is that it is always dominant, regardless of the value of the
gradient ð∂p=∂xÞ, in the long-time limit and can never be
balanced by diffusion. In other words, there exists no
steady-state solution for the diffusion equation with flux (5)
as t tends to infinity. Let us demonstrate the dominance of
the anomalous advection term by taking the Laplace
transform of ∂p=∂t ¼ −∂J=∂x which leads to

sp̂ðx; sÞ − pðx; 0Þ ¼ −
∂Ĵðx; sÞ

∂x ; ð12Þ

where the Laplace transform of the flux is

Ĵðx; sÞ ¼ −
a2s

2ðτ0sÞμðxÞ
�∂p̂
∂x − lnðτ0sÞ

dμ
dx

p̂

�
: ð13Þ

In the limit s → 0, the left hand side of Eq. (12) becomes
negligible compared to the right hand side. Therefore, we
equate Ĵðx; sÞ to zero and obtain

∂p̂ðx; sÞ
∂x ¼ lnðτ0sÞ

dμ
dx

p̂ðx; sÞ: ð14Þ

It is clear that as s → 0, the logarithmic factor lnðτ0sÞ on
the right hand side tends to −∞, which explains the
dominance of the advection in the long-time limit. The
solution to this equation with the normalization condition is

sp̂ðx; sÞ ¼ ðτ0sÞμðxÞR
L
0 ðτ0sÞμðxÞdx

: ð15Þ

Since μðxÞ is an increasing function and it has a mini-
mum at x ¼ 0, as s → 0, the peak of ðτ0sÞμðxÞ ¼
exp ½μðxÞ lnðτ0sÞ� is concentrated in the neighborhood of
x ¼ 0. So we can use the Laplace method to obtainR
L
0 ðτ0sÞμðxÞdx ∼ −ðτ0sÞμð0Þ=½μ00 lnðτ0sÞ�. Therefore,

sp̂ðx; sÞ ∼ −ðτ0sÞΔμðxÞμ00 lnðτ0sÞ: ð16Þ

Taking the inverse Laplace transform, we obtain the
asymptotic density (3). This asymptotic form is a result
of an anomalous aggregation mechanism with a dominant
advection term, which has no analogue in classical
advection-diffusion equations.
In fact, the anomalous advection term in Eq. (5) is so

dominant that it overpowers the standard drift such that,
instead of an equilibrium Boltzmann distribution, Eq. (3)
becomes the asymptotic solution of the space-dependent
variable-order fractional Fokker-Planck equation [15,16] in
the long-time limit. So Eq. (3) remains a valid asymptotic
representation of the solution for thegeneral space-dependent
variable-order fractional Fokker-Planck equation [16].

∂p
∂t ¼−

∂
∂x

�
vðxÞDμðxÞD

1−μðxÞ
t p−

∂
∂xDμðxÞD

1−μðxÞ
t p

�
; ð17Þ

where the drift function, vðxÞ ¼ f2½rðxÞ − lðxÞ�=ag, can be
found from the nonsymmetrical randomwalkon a latticewith
the space distance a; rðxÞ is the probability of particles at
position x moving right; and lðxÞ ¼ 1 − rðxÞ is the proba-
bility moving left.
To show the dominance over the standard drift, we take

the Laplace transform of Eq. (17). The equation will be the
same as (12) but with a modified flux

Ĵðx;sÞ¼−
a2s

2ðτ0sÞμðxÞ
�∂p̂
∂xþvðxÞp̂− lnðτ0sÞ

dμ
dx

p̂

�
: ð18Þ
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Just as before, in the long-time limit as s → 0 and lnðτ0sÞ →
−∞, the advection term vðxÞp̂ in Eq. (18) is negligibly small
compared to the advection− lnðτ0sÞðdμ=dxÞp̂ generated by
the nonuniform nature of the anomalous exponent μðxÞ.
Therefore, Eq. (3) is also the long-time asymptotic repre-
sentation of the solution to Eq. (17). This is confirmed by the
Monte Carlo simulation shown in Fig. 2.
Another measure which again demonstrates the ultra-

slow formation of a nonuniform distribution is the mean
position x̄ðtÞ ¼ R

L
0 xpðx; tÞdx. Using Eq. (3), we find x̄ðtÞ∼

L=½μ00 lnðt=τ0Þ� as t → ∞. It is clear that particles move
ultraslowly towards x ¼ 0 since the mean position of
particles decreases to zero logarithmically.
Monte Carlo Simulations.—To verify the asymptotic

density (3), we perform Monte Carlo simulations of the
following random walk. There are k boxes equally spaced
between x ¼ 0 and x ¼ L with each box i having length
a ¼ ðL=kÞ. A particle resides in box i for a random residence
time T drawn from a PDF, ψμiðτÞ ¼ −ð∂=∂τÞEμi ½−ðτ=τ0Þμi �
(details in [30]) where μi is a discrete sampling of a linearly
increasing function, μðxÞ ¼ μð0Þ þ ½μðLÞ − μð0Þ�x=L and
τ0 is the time scale as before. After waiting for timeT, it hops
rightwith probability ri or leftwith probability 1 − ri, except
for when the particle occupies state i ¼ 1 or k. At the
boundaries, the particles are reflected. The escape rate from
the box i is IiðtÞ ¼ τ−μi0 D1−μi

t piðtÞ [6,15]. The master
equation can be written as

dpiðtÞ
dt

¼ −
1

τμi0
D1−μi

t piðtÞ þ
1 − riþ1

τμiþ1

0

D1−μiþ1
t piþ1ðtÞ

þ ri−1
τμi−10

D1−μi−1
t pi−1ðtÞ; ð19Þ

where piðtÞ is the probability that a particle occupies state i
at time t [6,15]. In the continuous limit, this master equation
for symmetric random walks, ri ¼ 0.5, reduces to the
fractional diffusion equation (1). For an asymmetric random
walk, this master equation reduces to the fractional Fokker-
Planck equation (17).
Figure 1 shows the normalized histograms for N ¼ 104

particles performing the symmetric random walk with a
uniform initial distribution, ri ¼ 0.5, L ¼ 1, k ¼ 50,
τ0 ¼ 10−3, and μi ¼ 0.4þ 0.5ði − 1Þ=ðk − 1Þ. One can
see excellent agreement between the asymptotic solution
(dashed line) and Monte Carlo simulations. The inset in
Fig. 1 illustrates numerical confirmation of the ultraslow
logarithmic aggregation of particles at x ¼ 0 as predicted
by (3). Furthermore, it shows the power-law decay of the
PDF: lnðtÞ=t−ΔμðxÞ for x ≠ 0.
To demonstrate numerically the dominance of the advec-

tion term involving the fractional operator (6) over the
standard advection in the variable-order fractional Fokker-
Planck equation (17), we perform Monte Carlo simulations
for an asymmetric random walk. We use ri ¼ 0.5þ
ð0.5=kÞ½0.5 − ði=kÞ� corresponding to the drift function
vðxÞ ¼ 1–2x in Eq. (17) [15]. The motivation behind using
this form of ri is to create advection that pushes particles to
the center of the domain, 0 < x < 1. For all other param-
eters, we use the same as in Fig. 1. Figure 2 shows that, at
intermediate time, t ¼ 5, there is the formation of a
Boltzmann-like distribution with the peak at the center of
the domain. However, in the long-time limit, when t ¼ 104,
the advection term involving the fractional operator (6) is
completely dominant and the asymptotic particle distribu-
tion corresponds to Eq. (3). If we approximate the nonuni-
form exponent by its meanvalue μ̄ ¼ ð1=LÞ R L

0 μðxÞdx, then
the asymptotic behavior of pðx; tÞ will be very misleading
because pðx; tÞ approaches the Boltzmann distribution (see
inset in Fig. 2).
Summary.—We have obtained the asymptotic represen-

tation of the solution of the space-dependent variable-order
fractional diffusion equation, which has remained unsolved
since it was proposed in 2005 [12]. We show that this
solution remains valid for the fractional Fokker-Planck
equation. It has been confirmed by direct numerical
simulation of the underlying anomalous CTRW. This
asymptotic form describes the ultraslow spatial aggregation
of subdiffusive particles, which has no analogue in widely
used classical advection-diffusion models. This new
anomalous mechanism is generated by the spatial depend-
ence of the fractional exponent, which leads to a new
advection term involving a logarithmic modification of the

FIG. 2. Asymptotic density (3) (dashed line) and normalized
histograms corresponding to simulation of N ¼ 104 particles
jumping between k ¼ 50 bins in the domain 0 ≤ x ≤ 1 with
fractional exponent μðxÞ ¼ 0.4þ 0.5x and τ0 ¼ 10−3. In this
simulation, ri ¼ 1

2
þ 0.5

k ð0.5 − ði=kÞÞ. The legend shows simu-
lation times, t, at which snapshots of the distribution of particles
was produced. Inset: The steady state solution of the fractional
Fokker-Planck equation for constant μ and vðxÞ ¼ 1–2x: pðxÞ ¼
Ce−ðx2−xÞ (solid line) and normalized histogram of particles at
t ¼ 104 with the same parameters and initial conditions as the
main histograms except with N ¼ 5 × 104 and mean fractional
exponent μ̄ ¼ R

1
0 μðxÞdx ¼ 0.65.
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Riemann-Liouville derivative. The unusual property of this
advection is that it is always dominant over diffusion and
standard drift regardless of the value of the gradient ∂p=∂x
at long times.
Experiments and analysis of empirical intracellular

lysosome distribution [24] provides a possible basis for
the formation of spatially nonuniform organelle distribution
formation. The anomalous mechanism presented in this
Letter is obviously not a complete theory for describing the
nonuniform distribution of intracellular organelles. There
are many other interactions and phenomena that occur in
conjunction. Two primary additional phenomena that will
affect this pattern are the superdiffusion generated by motor
protein transport of organelles [22,31,32] and the nonlinear
interaction of subdiffusive organelles [33] such as the
lysosome tethering to the endoplasmic reticulum observed
in [24]. Furthermore, there are several other mechanisms,
such as viscoelasticity and diffusion in labyrinthine envi-
ronments, that lead to subdiffusive motion of organelles
(see the excellent review [34]). Including these additional
effects in future works should provide a more physical and
accurate model of organelle organization in the cell.
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