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Quantum Brownian motion plays a fundamental role in many areas of modern physics. In the path-
integral formulation, environmental fluctuations can be characterized by auxiliary stochastic fields.
Intriguingly, for fermionic environments the stochastic fields must be Grassmann valued so as to memorize
the order of the random forces exerted on the system. Such nonclassical fields cannot be represented by
conventional means. We propose a strategy to map the Grassmann-number fields to conventional c-number
noises and a set of quantized pseudolevels. The resulting stochastic equation of motion (SEOM) enables
direct stochastic simulation of the fermionic dissipative dynamics. The SEOM gives exact physical
observables of noninteracting systems, and yields accurate approximate results for interacting systems. The
practicality and accuracy of the proposed strategy and the SEOM are exemplified by numerical studies
conducted on a single-impurity Anderson model.
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Introduction.—Over a century ago, Einstein explained
the nature of Brownian motion by establishing a quanti-
tative relationship between the dissipative forces driving a
classical particle and the environmental thermal fluctua-
tions [1]. Nowadays, quantum Brownian motion [2–6], i.e.,
the dissipative dynamics of a quantum system driven by the
quantum fluctuations in the surrounding environments [7],
plays a fundamental role in many subdisciplines of modern
physics.
The main challenge in describing quantum Brownian

motion is to address the combined effects of system-
environment dissipation [8], many-body interaction [9],
and non-Markovian memory [10,11]. This requires a
statistical treatment of environment which usually has an
infinite number of degrees of freedom. The environmental
fluctuations have been characterized by a number of
principal pseudomodes [12,13] or “dissipatons” [14],
leading to a coupled set of Fokker-Planck-type equations,
such as the hierarchical equations of motion (HEOM) [15–
18]. However, in certain circumstances, such as when the
environmental temperature is low, the set of deterministic
equations can be too large to be practical.
Alternatively, environmental fluctuations can be cap-

tured by stochastic fields [19]. The Brownian dynamics of a
quantum pollen grain, and more generally, the dissipative
dynamics of an open quantum system, can be formally
described by a Langevin-type equation (we set ℏ ¼ 1 in
below) [20,21]:

j _Ψsi ¼ −iHSjΨsi þ vtL̂jΨsi: ð1Þ

Here, jΨSi and HS are the wave function and Hamiltonian
of the system, respectively. The stochastic field vt together
with the integro-differential operator L̂ constitute the
random force exerted by the environment.
Figure 1 illustrates the time evolution of a system-bath

composite driven by stochastic fluctuations in the bath. The
dissipation events are the transfer of particles from the bath
to the system. If the particles are bosons, interchanging the
order of two bath fluctuations will not change the statistical
average of the final state, provided that fvtg are classical
fields, i.e., vtvτ ¼ vτvt. Therefore, for a boson bath, the
stochastic fields in Eq. (1) can be represented by c-number
noises. Such formal simplicity has greatly facilitated the
development and application of the stochastic theories for
bosonic environments. For instance, the quantum state
diffusion (QSD) theory [20,22–29] and the stochastic
equation of motion (SEOM) theory [21,30–35] have been
applied to investigate the quantum dissipative dynamics in
realistic systems, such as the transfer of excitons in molecu-
lar aggregates under the influence of a phonon bath [36].
The situation is different for fermionic environments. As

exemplified in Fig. 1, if fvtg were classical fields,
interchanging the order of two bath fluctuations would
result in a sign change in the final wave function. This is
obviously unphysical, because the sign change would lead
to a nonunique statistical average of the final state.
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Therefore, to preserve the uniqueness of all the physical
observables, fvtg must satisfy vtvτ ¼ −vτvt. This means
that the stochastic fields should contain the information on
the order of all the bath fluctuations prior to the final time.
Mathematically, such nonclassical fields are represented by
Grassmann-number (g number) noises.
Unlike c numbers, the g numbers cannot be realized

by scalars. Normally, it would require N matrices of size
2N × 2N to represent N anticommuting g numbers, which is
apparently impractical when N is large. Such difficulty has
severely hindered the practical application of stochastic
theories to fermionic environments. From the early formu-
lation of fermion Brownian motion [38–41] to the recent
extensions of QSD [42–46] and SEOM [47] theories to
fermionic open systems, all the previous efforts were
limited to formal derivations [42,47], whereas to the best
of our knowledge, no stochastic simulation has been
conducted on the fermionic dissipative dynamics.
To enable direct stochastic simulation of fermion

Brownian motion, we need to overcome three problems:
First, the bath’s infinite degrees of freedom are to be
decoupled from the system dynamics. Second, the influ-
ence of non-Markovian bath memory on the system state
needs to be accounted for properly. Third, the g-number
fields representing the stochastic bath fluctuations must be
realized numerically. While the first and second problems
are common to boson baths, the third problem is unique and
formidable to fermion baths.

A new mapping strategy.—To interrupt the status quo,
and to conquer the above three problems, we propose in this
Letter a new mapping strategy consisting of three con-
secutive mappings, through which a numerically feasible
and accurate SEOM method for fermionic open systems is
finally established.
As depicted in Fig. 2, through the mapping (i), the

system-bath coupling is replaced by stochastic g-number
fields applied on the system and the bath. This formally
decouples the system dynamics from the bath counterpart.
However, after the mapping (i), the fermion bath still has an
indirect influence on the statistical average of the system
state through its non-Markovian memory.
The mapping (ii) is subsequently adopted to capture the

non-Markovian bath memory. This gives rise to the
memory-convoluted g-number fields applied on the system.
After the mapping (ii), the statistical average of the system
state no longer depends explicitly on the bath’s degrees of
freedom.
The bosonic analogues of the mappings (i) and (ii) have

been developed [21,31], but with the stochastic fields being
c numbers. They have allowed for stochastic simulation of
bosonic dissipative dynamics. In contrast, for fermionic
environments the mappings (i) and (ii) alone are inadequate
because of the aforementioned formidable difficulty in
numerical realization of the g numbers. To overcome this
problem, we propose a new mapping, the mapping (iii),
through which the g-number fields are represented by c
numbers and a set of pseudolevels; see Fig. 2. This
eliminates the difficulty haunting the stochastic simulation

FIG. 2. Schematic illustration of our strategy to enable direction
simulation of fermionic dissipative systems. Through the map-
ping (i), the system-bath coupling is replaced by stochastic g-
number fields applied on both the system and the fermion bath.
The dotted arrow indicates the influence of non-Markovian bath
memory on the statistical average of the system state. Through the
mapping (ii), the non-Markovian bath memory is captured by the
memory-convoluted g-number fields applied on the system.
Through the mapping (iii), all the g-number fields are represented
by stochastic c-number fields and a set of pseudolevels. The
mappings (i)–(iii) finally result in a numerically feasible SEOM.

FIG. 1. Illustration of time evolution of a system-bath
composite driven by stochastic fluctuations in the bath. For
simplicity, the composite Hamiltonian is set to zero. The upper
branch involves two dissipation events: a particle transfers from
Q1 (in the bath) to A (in the system) at time t1 driven by v1, and a
second particle transfers from Q2 to B at time t2 driven by v2,
where v1 and v2 are two arbitrary dimensionless noises. The final
state is jΨti ¼ jΦti − v2v1d̂

†
Bd̂Q2

d̂†Ad̂Q1
jΨ0i, where jΨ0i is the

initial state and jΦti contains the rest of jΨti. In the lower branch,
the order of the two bath fluctuations is interchanged, and the
final state is jΨ0

ti ¼ jΦ0
ti − v1v2d̂

†
Bd̂Q1

d̂†Ad̂Q2
jΨ0i. Here, d̂Q1

and

d̂Q2
commute (anticommute) for a boson (fermion) bath. To

ensure jΨti and jΨ0
ti have the same statistical average over

fv1; v2; Q1; Q2g, we must have v2v1 ¼ v1v2 for the boson bath,
and v2v1 ¼ −v1v2 for the fermion bath, respectively. More
details are given in the Supplemental Material [37]. jΨsi in
Eq. (1) is obtained by further tracing out the bath degrees of
freedom in jΨti.
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of fermionic open systems, and eventually results in a
numerically feasible SEOM. In the following, we elaborate
on the details of the mappings (i)–(iii).
Mapping (i): Decoupling system from bath.—Without

loss of generality, we apply our strategy to a single-level
system (described by HS ¼ ϵĉ†ĉ) initially isolated from a
fermion bath (described by HB). The system-bath coupling
is then turned on as HSB ¼ ĉ†F̂ þ F̂†ĉ with F̂ ¼ P

k tkd̂k.
Here, ftkg are coupling strengths, and ĉ (ĉ†) and d̂k (d̂†k) are
the annihilation (creation) operators for the system and bath
levels, respectively.
In the path-integral formulation, we factorize the propa-

gators e�iHSBdt by employing a stochastic decoupling
approach [31]. This results in a Langevin-type equation
for the decoupled system or bath density matrix ρS=ρB [37]:

_ρS ¼ −i½HS; ρS� þ e−iπ=4ðĉ†η1t þ η̄2tĉÞρS
þ eiπ=4ρSðĉ†η3t þ η̄4tĉÞ; ð2Þ

_ρB ¼ −i½HB; ρB� þ e−iπ=4ðη̄1tF̂ þ F̂†η2tÞρB
þ eiπ=4ρBðη̄3tF̂ þ F̂†η4tÞ: ð3Þ

Hereafter, we use fηjtg to denote the auxiliary g-number
fields (AGFs), and η̄jt is the conjugate of ηjt. The AGFs
should satisfy ηjtηj0τ ¼ −ηj0τηjt, and their stochastic aver-
ages are hηjti ¼ hη̄jti ¼ 0 and hηjtη̄j0τi ¼ δjj0δðt − τÞ.
Being the outcomes of the mapping (i), Eqs. (2) and (3)

recover exactly the Schrödinger equation for the total
density matrix of the system-bath composite ρT [37],

ρT ¼ hρSρBi≡
Z

t

t0

Dη̄Dηe
−
R

t

t0
η̄τητdτρSρB; ð4Þ

where h� � �i denotes the stochastic average over all the
AGFs, with η̄≡ fη̄jτg and η≡ fηjτg. To obtain the
physical observables, we need to acquire the reduced
system density matrix ρ ¼ trBðρTÞ ¼ hρ̃Si with ρ̃S≡
ρStrBðρBÞ. An arbitrary system observable O is evaluated
via O ¼ trSðÔρÞ. Here, trB (trS) denotes the trace over the
bath (system) subspace.
Mapping (ii): Capturing non-Markovian bath

memory.—The influence of non-Markovian bath memory
on the reduced system dynamics is captured by trBðρBÞ. For
a noninteracting bath, it can be explicitly evaluated by
solving Eq. (3) using the Magnus expansion [48], and
the result includes the following memory-convoluted
AGFs [37]:

g−t ¼
Z

t

t0

f½Cþðt − τÞ��η4τ − iC−ðt − τÞη2τgdτ;

gþt ¼
Z

t

t0

f½C−ðt − τÞ��η̄3τ − iCþðt − τÞη̄1τgdτ; ð5Þ

where the bath correlation functions C�ðt − τÞ are related
to the bath spectral function via the fluctuation-dissipation

theorem [37]. Inclusion of the influence of bath leads to the
following rigorous SEOM for ρ̃S:

_̃ρS ¼ −i½HS; ρ̃S� þ e−iπ=4fĉ†g−t − gþt ĉ; ρ̃Sg
þ e−iπ=4ðĉ†η1t þ η̄2tĉÞρ̃S þ eiπ=4ρ̃Sðĉ†η3t þ η̄4tĉÞ: ð6Þ

Here, the memory-convoluted AGFs fg�t g and the instan-
taneous AGFs fηjt; η̄jtg characterize the mean force and
random force exerted by the bath, respectively [49].
Being the result of the mapping (ii), Eq. (6) is formally

exact. However, the practical use of Eq. (6) faces the
fundamental difficulty of realizing the AGFs. Such diffi-
culty has prohibited any direct numerical application of
Eq. (6) or its analogues [43,47].
Mapping (iii): Representing AGFs by c numbers and

pseudolevels.—Now we show it is possible to represent g
numbers by operable quantities and obtain accurate results.
Consider a prototypical SEOM:

_y ¼ y

�

DðtÞηt þ
Z

t

t0

CðτÞη̄τdτ
�

; ð7Þ

where CðtÞ and DðtÞ are known functions. We propose by
intuition a mapping as follows:

ηt ↦ vtX−; η̄t ↦ vtXþ: ð8Þ

Here, the c-number noises fvtg account for the stochastic
amplitudes of the AGFs, while the pseudo-operators X�

trace the time order of the AGFs. Specifically, X� are
defined in the space S ¼ f−1; 0; 1g. Let ỹ ¼ P

l∈S ỹ
½l�. The

action of X� on ỹ½l� gives ỹ½l�X� ¼ δ�l ỹ
½l�1�, with δ�0 ¼

δþ−1 ¼ −δ−1 ¼ 1 and δ−−1 ¼ δþ1 ¼ 0. The mapping of Eq. (8)
converts Eq. (7) to a conventional stochastic differential
equation:

_̃y ¼ ỹ

�

DðtÞvtX− þ
Z

t

t0

CðτÞvτdτXþ
�

: ð9Þ

Interestingly, the average of ỹ, defined by hỹi≡Mðỹ½0�Þ
with M denoting the stochastic average over fvtg, repro-
duces exactly hyi, the average of y over fη̄τ; ητg [37].
In general, the mapping of Eq. (8) is not guaranteed to be

exact, because the space S is drastically smaller than that of
the AGFs. For Eqs. (5) and (6), which involve the
convolution of memory, the finiteness of S may cause a
loss of memory when tracing the cumulative influence of
the AGFs. This is to be analyzed below.
We now apply the mapping of Eq. (8) to the AGFs in

Eq. (6), i.e., ηjt ↦ vjtX−
j and η̄jt ↦ vjtX

þ
j , where fvjtg are

Gaussian white noises, while X�
j are pseudo-operators

defined in the space Sj ¼ f−1; 0; 1g. We further set X�
3 ¼

X�
1 and X�

4 ¼ X�
2 . Like the g numbers, X�

j mutually antico-
mmute. The non-Markovian bath memory is characterized
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by the memory-convoluted c-number fields fg̃�t g, which
are obtained via replacing ηjτ and η̄jτ in Eq. (5) by vjτ.
Denote also

Y1 ≡ v1tX−
1 þ g̃−t X−

2 ; Y2 ≡ v2tX
þ
2 − g̃þt Xþ

1 ;

Y3 ≡ v3tX−
1 − ig̃−t X−

2 ; Y4 ≡ v4tX
þ
2 þ ig̃þt Xþ

1 : ð10Þ

Define ρ̃S ¼
P

l1∈S1

P
l2∈S2 ρ̃

½l1l2�
S in the space V ≡ VS ⊗

S1 ⊗ S2, where VS is the system subspace. X�
j can act to

the left or right of ρ̃S, and the results of the actions are
detailed in the Supplemental Material [37]. We thus map
Eq. (6) to a numerically feasible SEOM:

_̃ρS ¼ −i½HS; ρ̃S� þ e−iπ=4ðĉ†Y1 þ Y2ĉÞρ̃S
þ eiπ=4ρ̃Sðĉ†Y3 þ Y4ĉÞ; ð11Þ

with the initial condition ρ̃Sðt0Þ ¼ ρ̃½00�S ðt0Þ. The statistical

average of ρ̃S is obtained via ρ ¼ hρ̃Si≡Mðρ̃½00�S Þ.
Equation (11) is the result of the mapping (iii). The space

Sj represents a pseudolevel, with its three elements (1, 0,
and −1) labeling a single-particle, vacuum, and single-hole
pseudo-Fock-states, respectively. The action of Xþ

j ĉ (ĉ
†X−

j )
on ρ̃S can be interpreted as the transfer of a particle (hole)
from the system to the jth pseudolevel. Thus, the space
S1 ⊗ S2 serves as a register to record the time order of the
stochastic forces.
Important features of the fermionic SEOM.—If the

system dynamics spans Nt time steps, it would take 8Nt
mutually anticommuting matrices of the size 28Nt × 28Nt to
represent all the AGFs in Eq. (6). In contrast, after the
mapping (iii), it only requires 4 matrices of the size 32 × 32

to represent all the pseudo-operators in Eq. (11). Clearly,
the mapping (iii) drastically reduces the size of the auxiliary
space, and thus makes the stochastic simulation of fer-
mionic dissipative dynamics possible.
We now analyze how the reduced size of the auxiliary

space affects the exactness of Eq. (11) by making con-
nection to the fermionic HEOM formalism [18,50]. The
basic variables of HEOM are auxiliary density operators
(ADOs) constructed based on an exponential unraveling of
the bath correlation functions. It can be proved that an
arbitrary ADO can be retrieved exactly from the formal
solution of Eq. (6) [37]; i.e., Eq. (6) is formally equivalent
to the rigorous fermionic HEOM.
As the result of the mapping (iii), Eq. (11) is formally

equivalent to a simplified version of HEOM (sim-HEOM)
[37,50], in which all the interference ADOs are preset to
zero, rather than to the full HEOM. In the context of
Eq. (11), the definition of an interference ADO involves
two or more identical pseudo-operators X�

j . Since each
pseudolevel accommodates at most one particle or hole, the
repetitive actions of a same pseudo-operator X�

j on ρ̃S must
yield zero [37]. It is thus clear that the mapping (iii) is

intrinsically approximate, as it may cause loss of memory
when a same particle-transfer event occurs more than
2 times in a row.
The SEOM of Eq. (11) and the sim-HEOM share the

following common features [50]: (a) For general non-
interacting systems, they yield the exact reduced single-
particle density matrix and any system observable.
Consequently, despite the approximation adopted in the
mapping (iii), the resulting SEOM of Eq. (11) can still yield
exact dissipative dynamics. (b) For general interacting
systems, the resulting dissipative dynamics are in principle
approximate, because the interference ADOs can be
important for a quantitative description of the many-body
correlation effects. Nevertheless, as will be shown below,
Eq. (11) can still give accurate prediction on the dissipative
dynamics of an interacting open system.
Extension of Eqs. (6) and (11) to general multilevel

systems is straightforward, and the mappings (i)–(iii) as
well as the above analysis remain valid [37].
Numerical example: Stochastic simulation of dissipative

electron dynamics.—We now demonstrate the practicality
and accuracy of the fermionic SEOM by studying a single-
impurity Anderson model. The impurity (system) and the
reservoir (bath) are represented by HS ¼

P
s¼↑;↓ ϵsn̂s þ

Un̂↑n̂↓ and HB ¼ P
ks ϵksn̂ks, respectively, where n̂s

and n̂ks are electron number operators, and U is the

(a)

(b)

FIG. 3. (a) Time evolution of nsðtÞ calculated with the SEOM
and HEOM methods. The parameters adopted are (in arbitrary
unit): ϵ↑ ¼ 0.5, ϵ↓ ¼ −0.5, U ¼ 5, Γ ¼ 0.5, Ω ¼ 0, and W ¼ 5.
The Euler-Maruyama algorithm [52] is employed to solve the
SEOM with a time step of dt ¼ 0.001. The number of trajectories
is Ntraj ¼ 5 × 106 for all lines. (b) nðtÞ ¼ n↑ðtÞ þ n↓ðtÞ calcu-
lated with the SEOM and HEOM methods. The impurity level
energy is shifted by Δϵ ¼ −5.0 during the time interval
0.1 < t < 0.2. Other parameters adopted are (in arbitrary unit):
ϵ↑ ¼ ϵ↓ ¼ −2.5, U ¼ 10, Γ ¼ 0.5, Ω ¼ 0, W ¼ 5, and
T ¼ 0.01. We choose dt ¼ 0.001 and Ntraj ¼ 1 × 106 for SEOM
calculations. To reveal the stochastic nature of the calculated nðtÞ,
we display its time derivative ðdn=dtÞ in the inset of (b), so that
the stochastic variance becomes recognizable.
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electron-electron interaction energy. The bath memory
is characterized by the hybridization function ΔsðωÞ≡
π
P

kjtksj2δðω−ϵksÞ¼ðΓ=2Þ½W2=ðω−ΩÞ2þW2�, where Γ,
Ω, and W are the effective impurity-reservoir coupling
strength, and the reservoir band center and width,
respectively.
Initially the impurity is doubly occupied by spin-up and -

down electrons, and is isolated from the equilibrium
reservoir. Then the turn-on of HSB triggers the electron
transfer between the impurity and the reservoir. The time
evolution of ρðtÞ is obtained by solving a spin-resolved
version of Eq. (11). The electron occupation number on the
impurity is computed via nsðtÞ ¼ trS½n̂sρðtÞ�, and compared
against the highly accurate HEOM results in Fig. 3. Despite
the appreciable value of U adopted, the results of our
proposed SEOM agree remarkably with those of the full
HEOM, with the relative deviations being less than 0.3%
[37,51]. This is because the impurity-reservoir composite
does not contain any strongly correlated state within the
examined time window, and hence the simplified and the
full HEOM give almost identical predictions [37].
Concluding remarks.—Regarding numerical efficiency,

SEOM does not require the unraveling of C�ðtÞ, and hence
its memory cost is drastically smaller than HEOM. This
allows for exploring the ultralow-temperature regime which
remains prohibitive for the present HEOM. Moreover, the
trajectory-based algorithms could benefit from massive
parallel computing techniques.
If the dissipative dynamics of an interacting system

involves strongly correlated states, the mapping of Eq. (8)
and the resulting SEOM may yield less accurate predic-
tions. Even so, the proposed mapping strategy still lays a
valuable foundation for future development of advanced
SEOM methods. For instance, the electron-electron inter-
action in HS may be further represented by stochastic c-
number fields [53,54]. This will map the interacting system
to an effectively noninteracting system and result in a
formally exact SEOM. Alternatively, the many-body cor-
relation manifested by the interference ADOs may be
retrieved by a more sophisticated construction of the
auxiliary spaces Sj.
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