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We consider simulating an n-qubit Hamiltonian with nearest-neighbor interactions evolving for time t on
a quantum computer. We show that this simulation has gate complexity ðntÞ1þoð1Þ using product formulas, a
straightforward approach that has been demonstrated by several experimental groups. While it is reasonable
to expect this complexity—in particular, this was claimed without rigorous justification by Jordan, Lee, and
Preskill—we are not aware of a straightforward proof. Our approach is based on an analysis of the local
error structure of product formulas, as introduced by Descombes and Thalhammer and significantly
simplified here. We prove error bounds for canonical product formulas, which include well-known
constructions such as the Lie-Trotter-Suzuki formulas. We also develop a local error representation for
time-dependent Hamiltonian simulation, and we discuss generalizations to periodic boundary conditions,
constant-range interactions, and higher dimensions. Combined with a previous lower bound, our result
implies that product formulas can simulate lattice Hamiltonians with nearly optimal gate complexity.
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Simulating the Hamiltonian dynamics of a quantum
system is one of the most natural applications of a quantum
computer. Indeed, the idea of quantum computation, as
suggested by Feynman [1] and others, was primarily
motivated by the problem of quantum simulation.
Quantum computers can simulate a variety of physical
systems, including quantum chemistry [2–5], quantum field
theory [6,7], and many-body physics [8], and could
ultimately lead to practical applications such as designing
new pharmaceuticals, catalysts, and materials [9,10].
A natural class of Hamiltonians that includes many

physically reasonable systems is the class of lattice
Hamiltonians [6,11–13]. Lattice Hamiltonians arise in
many models of condensed matter physics, including
systems of spins (e.g., Ising, XY, and Heisenberg models;
Kitaev’s toric code and honeycomb models; etc.), fermions
(e.g., the Hubbard model and the t-J model), and bosons
(e.g., the Bose-Hubbard model). Note that fermion models
can be simulated using local interactions among qubits by
using a mapping to qubits that preserves locality [14].
Digital simulations of quantum field theory also typically
involve approximation by a lattice system [6].
For simplicity, we mainly focus on nearest-neighbor

lattice systems in one dimension (although we discuss
generalizations to other lattice models as well). In this case,
n qubits are laid out on a one-dimensional lattice and the
Hamiltonian only involves nearest-neighbor interactions.
Specifically, a Hamiltonian H is a lattice Hamiltonian if
it acts on n qubits and can be decomposed as
H ¼ P

n−1
j¼1 Hj;jþ1, where each Hj;jþ1 is a Hermitian

operator that acts nontrivially only on qubits j and

jþ 1. We assume that maxjkHj;jþ1k ≤ 1, for otherwise
we evolve under the normalized Hamiltonian
H=maxjkHj;jþ1k for time maxjkHj;jþ1kt.
Lloyd’s original proposal for an explicit quantum sim-

ulation algorithm [15] uses the Lie-Trotter product formula.
Subsequent work achieves better asymptotic complexity
[16] using higher-order Suzuki formulas [17]. We refer to
all such formulas as product formulas. The product-
formula algorithm is straightforward yet surprisingly effi-
cient for quantum simulation. Indeed, it can conserve
certain symmetries of the dynamics [18] and appears to
be advantageous for various practical systems [2,19,20].
Although recent simulation algorithms have better asymp-
totic complexities [21–30], the product-formula approach
remains a natural choice for experimental simulations
[31–33] due to its simplicity and the fact that it does not
require any ancilla qubits. Its study has also illuminated
areas beyond quantum computing [34].
One of the main challenges in quantum simulation is to

analyze the gate complexity of simulation algorithms.
Explicit gate counts are especially desirable for near-term
simulation because early quantum computers will only be
able to reliably perform a limited number of gates. While
existing analysis appears to be tight for recent simulation
algorithms, the product-formula bound can be loose by
several orders of magnitude [2,8,19,20]. This dramatic gap
makes it hard to identify the fastest simulation algorithm
and to find optimized implementations for near-term
applications [19].
Product formulas can simulate a lattice system with fixed

accuracy with gate complexity O(nðntÞ2) in the first-order
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case andO(nðntÞ1þ1=2k) in the (2k)th-order case. However,
it is natural to expect a more efficient simulation. Roughly
speaking, a system simulates its own evolution for constant
time using only constant circuit depth—and hence an
extensive number of gates—so one might expect a true
simulation complexity of OðntÞ. Indeed, Jordan, Lee,
and Preskill claimed that product formulas can simulate
an n-qubit lattice system with ðntÞ1þoð1Þ gates [6], but they
did not provide rigorous justification and it is unclear how
to formalize their argument. Subsequent work improves the
analysis of the product-formula algorithm using informa-
tion about commutation among terms in the Hamiltonian
[3,4,19,35], the distribution of norms of terms [36], and
by randomizing the ordering of terms [37,38]. However,
none of these improvements can achieve the claimed gate
complexity ðntÞ1þoð1Þ for lattice simulation.
Main result.—LetH ¼ P

n−1
j¼1 Hj;jþ1 be an n-qubit lattice

Hamiltonian. We order the terms in the even-odd pattern
H1;2; H3;4;…; H2;3; H4;5;… obtaining the first-order prod-
uct formula

S1ðtÞ ≔
Yðn=2Þ−1

k¼1

e−itH2k;2kþ1

Yn=2
k¼1

e−itH2k−1;2k

¼ e−itHevene−itHodd ð1Þ

and the (2k)th-order product formulas

S2ðtÞ ≔ e−iðt=2ÞHodde−itHevene−iðt=2ÞHodd

S2kðtÞ ≔ S2k−2ðpktÞ2S2k−2(ð1 − 4pkÞt)S2k−2ðpktÞ2 ð2Þ

with pk ≔ 1=ð4 − 41=ð2k−1ÞÞ. Our main result is an asymp-
totic upper bound on the product-formula error

kS1ðtÞ − e−itHk ¼ Oðnt2Þ
kS2kðtÞ − e−itHk ¼ Oðnt2kþ1Þ; ð3Þ

where k � � � k denotes the spectral norm.
The above error bound works well only for very small t.

To simulate for a longer time, we divide the entire evolution
into r segments, and within each segment, we simulate
using product formulas. To achieve accuracy ϵ, it suffices to
choose r1 ¼ Oðnt2=ϵÞ for the first-order formula and r2k ¼
O(tðnt=ϵÞ1=2k) for the (2k)th-order formula. Equivalently,
we have gate complexity O(ðntÞ2) and O(ðntÞ1þ1=2k) for
the first- and (2k)th-order algorithm, assuming that we
simulate with constant accuracy.
For any δ > 0, we choose an integer k sufficiently large

so that 1=2k ≤ δ, upper bounding the gate complexity as
O(ðntÞ1þ1=2k) ¼ O(ðntÞ1þδ). This proves that the product-
formula algorithm has asymptotic gate complexity
ðntÞ1þoð1Þ. Combining with the lower bound of Ω̃ðntÞ
established in Ref. [12], we have showed that product

formulas can simulate a lattice Hamiltonian with nearly
optimal gate complexity.
Applications.—As an immediate application, our result

gives a rigorous proof of the Jordan-Lee-Preskill claim
about the complexity of simulating quantum field theory
[6]. Recent works have analyzed the gate complexity of
other quantum field theory simulations [39], including
digital simulation of gauge theories [40]. The lattice
Hamiltonians there have similar locality, so our analysis
still applies. We expect our technique can be generalized to
speed up the simulation of other systems, such as electronic
structure Hamiltonians [9], power-law decaying inter-
actions [41], exponentially decaying interactions [42],
and clustered Hamiltonians [43], but we leave a thorough
study of such generalizations as a subject for future
work [44].
To simulate an n-qubit lattice Hamiltonian for time t, our

algorithm has circuit depth noð1Þt1þoð1Þ. As a side applica-
tion, our analysis gives a tensor network representation of
lattice systems with bond dimension 2n

oð1Þt1þoð1Þ
, using the

counting argument of Ref. [45]. This exponentially
improves a recent construction of Ref. [46], Lemma 17
which uses only the first-order Trotter decomposition.
We work primarily with an idealized setting where

quantum operations can be performed faithfully.
However, in realistic experiments, quantum gates will be
imperfectly implemented. For such a case, Ref. [47]
estimates the simulation accuracy as α=r2k þ βr in dia-
mond-norm distance [48,49], where α captures the algo-
rithmic error of product formulas and β captures gate
errors. This leads to an optimal number of segments
r ¼ ðα2k=βÞ1=2kþ1, which can be improved by our result.
Specifically, the original analysis in Ref. [16] implies
αorig ¼ O(ðntÞ2kþ1). This has been improved by sub-
sequent work [19,37], although none of these improve-
ments achieves linear scaling in n. In contrast, the analysis
of this Letter gives αopt ¼ Oðnt2kþ1Þ, improving the per-
formance as a function of n even in the presence of noise.
Our main goal is to establish the gate complexity of

ðntÞ1þoð1Þ for the product-formula algorithm. However,
our analysis is not only nearly optimal in the asymptotic
regime but also appears to be much tighter in practice. For
concreteness, we numerically implement and optimize our
fourth-order bound, and compare it with previous product-
formula analysis, for simulation of a one-dimensional
Heisenberg model with a random magnetic field with
open boundary conditions [Ref. [50], Eq. (98)] (see
Fig. 1). We find that the scaling of our bound matches
the empirical performance and the constant prefactor is off
by only one order of magnitude, a significant improve-
ment over previous rigorous bounds [19]. Further
improvements of our bound are possible by optimizing
its numerical implementation; we leave a detailed study
for future work [44].
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Analysis of the first-order algorithm.—The key tech-
nique behind our approach is an integral representation of
the errorSðtÞ − e−itH that we develop based on Descombes
and Thalhammer’s local error analysis of product formulas
[55]. In the local error representation, the integrand is
expressed as a linear combination of nested commutators,
where the numbers of summands and nesting layers are
both independent of n and t. We use this representation to
get the correct asymptotic gate count as a function of n and
t. In contrast, the conventional approach uses the Baker-
Campbell-Hausdorff formula or naive Taylor expansion,
which requires the manipulation of infinite series and
appears to be technically challenging to analyze [56]
(Ref. [50], Sec. I).
To illustrate the proof idea, we show how to obtain

kS1ðtÞ − e−itHk ¼ Oðnt2Þ for the first-order formula. We
differentiate S1ðtÞ and obtain

S1
0ðtÞ ¼ −iHS1ðtÞ þ ½e−itHeven ;−iHodd�e−itHodd : ð4Þ

Using the variation-of-constants formula [55] (Ref. [57],
Theorem 4.9) with initial condition S1ð0Þ ¼ I, we find
an integral representation of the product-formula error
S1ðtÞ − e−itH as

Z
t

0

dτ1e−iðt−τ1ÞH½e−iτ1Heven ;−iHodd�e−iτ1Hodd : ð5Þ

We repeat this procedure to analyze the commutator
½e−iτ1Heven ;−iHodd�, obtaining an upper bound on the
spectral-norm error

kS1ðtÞ − e−itHk ≤
Z

t

0

dτ1

Z
τ1

0

dτ2k½Heven; Hodd�k: ð6Þ

We expandHodd andHeven according to their definitions.
Fixing an arbitrary term H2k−1;2k in Hodd, the commutator
½H2l;2lþ1; H2k−1;2k� is nonzero only when l ∈ fk − 1; kg.
We thus find that

½Heven; Hodd� ¼
Xn=2
k¼1

½H2k−2;2k−1 þH2k;2kþ1; H2k−1;2k�: ð7Þ

Using the triangle inequality, we have kS1ðtÞ − e−itHk ¼
Oðnt2Þ, which proves the claim Eq. (3) for the first-
order case.
Ordering robustness.—Our above bound works when

terms of the lattice Hamiltonian are ordered in the even-odd
pattern. However, this choice is not necessary: the first-
order algorithm has the same asymptotic error bound with
respect to any ordering of the lattice terms.
Our analysis relies on an error bound for swapping lattice

terms:

k½e−itHk;kþ1 ; e−itHl;lþ1 �k ≤ 2t2 ð8Þ

if jk − lj ¼ 1 and 0 otherwise. In words, we may swap two
exponentials e−itHk;kþ1 and e−itHl;lþ1 without error unless
their supports overlap, in which case the error is Oðt2Þ.
Let H ¼ P

n−1
j¼1 Hj;jþ1 be a lattice Hamiltonian. We now

simulate it using the first-order formula, but allow terms to
be ordered arbitrarily as

Q
n−1
j¼1 e

−itHσðjÞ;σðjÞþ1 , where σ ∈ Sn−1
is a permutation on the n − 1 elements f1;…; n − 1g. Then
the spectral-norm error kQn−1

j¼1 e
−itHσðjÞ;σðjÞþ1 − e−itHk is

upper bounded by

����
Yn−1
j¼1

e−itHσðjÞ;σðjÞþ1 − e−itHevene−itHodd

����
þ ke−itHevene−itHodd − e−itHk: ð9Þ

The second term is upper bounded by Oðnt2Þ. For
the first term, we transform

Q
n−1
j¼1 e

−itHσðjÞ;σðjÞþ1 intoQðn=2Þ−1
k¼1 e−itH2k;2kþ1

Qn=2
k¼1 e

−itH2k−1;2k by swapping neighbor-
ing exponentials. Every time two exponentials are
swapped, we use Eq. (8) to bound the error. The total
number of swaps of exponentials e−itHk;kþ1 and e−itHl;lþ1

with jk − lj ¼ 1 is at most 2n, incurring error
4nt2 ¼ Oðnt2Þ.
We have therefore obtained the same asymptotic error

bound for an arbitrary ordering of the Hamiltonian terms.
We call this phenomenon ordering robustness. Our analy-
sis shows that the first-order algorithm is ordering robust.
Whether a similar property holds for a general higher-order
formula remains an open question.
We also numerically compare the first-order algorithm

with the even-odd ordering and the ordering of Ref. [19].
Although they have the same asymptotic error bound,
in practice the even-odd ordering has a smaller expo-
nent and constant prefactor. Details can be found in
(Ref. [50], Sec. VI).
Analysis of higher-order algorithms.—Analyzing

higher-order product formulas is more challenging. To this

FIG. 1. Comparison of r for different product-formula bounds
for the Heisenberg model (see Ref. [50], Sec. VI for detailed
parameters). Error bars are omitted as they are negligibly small on
the plot. Straight lines show power-law fits to the data.
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end, we represent them in a canonical form, which is easy
to manipulate and encompasses well-known constructions
such as the Lie-Trotter-Suzuki formulas S1ðtÞ, S2kðtÞ as
special cases. We then use the variation-of-constants for-
mula to write

S2kðtÞ − e−itH ¼
Z

t

0

e−iðt−τÞHS2kðτÞTðτÞdτ; ð10Þ

where TðtÞ ¼ S†
2kðtÞ½ðd=dtÞS2kðtÞ − ð−iHÞS2kðtÞ�. As a

(2k)th-order formula, S2kðtÞ satisfies an order condition
S2kðtÞ ¼ e−itH þOðt2kþ1Þ, which further implies by
Taylor’s theorem

TðτÞ ¼ 2k
Z

1

0

dxð1 − xÞ2k−1Tð2kÞðxτÞ τ2k

ð2kÞ! : ð11Þ

Canonical product formulas and their order conditions are
further discussed in Ref. [50], Sec. II.
A direct expansion of TðtÞ gives the correct t depend-

ence Oðt2kþ1Þ of the product-formula error, but the scaling
in n is incorrect. Instead, we seek an alternative expression
for the integrand that consists of a linear combination of
nested commutators, where the number of commutators
and nested layers are both independent of n and t. Such an
expression is referred to as a local error representation in
Ref. [55]. However, the result of Ref. [55] depends on
auxiliary functions whose recursive structure is hard to
unravel. Instead, we develop a simpler representation of the
local error structure (Ref. [50], Sec. III).
In our representation, the operatorTðτÞ can be written as

a linear combination of operator-valued functions of the
form eiτX1 � � � eiτXlYe−iτXl � � � e−iτX1 , where operators Xj,
Y ∈ fHeven; Hoddg. As such, its higher-order derivatives
consist of unitary conjugations and commutators. When a
commutator is composed, we imitate Eq. (7) to show that
the support of the operator is expanded by at most a
constant factor. When a unitary conjugation is composed,
we decompose the unitary operators and cancel exponen-
tials with nonoverlapping supports. Throughout this pro-
cedure, we only introduce the OðnÞ error in the innermost
layer, proving the claim in Eq. (3) for the higher-order
cases. This error analysis is discussed in more detail in
Ref. [50], Sec. IV.
Generalized lattice Hamiltonians.—We have so far

focused on time-independent one-dimensional systems
with nearest-neighbor interactions and open boundary
conditions. However, our analysis can be easily adapted
to handle time-dependent Hamiltonians, periodic boundary
conditions, constant-range interactions, and higher-dimen-
sional systems, again with nearly optimal gate complexity.
When the Hamiltonian HðtÞ is time dependent, the

problem of quantum simulation becomes more difficult
[58]. Then there no longer exists a closed-form solution
to the Schrödinger equation. Furthermore, some quantum

simulation algorithms [22,25] that behave well in the time-
independent case fail to handle the time-dependent
Hamiltonian simulation. Nevertheless, we show that prod-
uct formulas can simulate time-dependent lattice
Hamiltonians with nearly optimal gate complexity. We
group the terms in the even-odd pattern

HoddðtÞ ¼ H1;2ðtÞ þH3;4ðtÞ þ � � �
HevenðtÞ ¼ H2;3ðtÞ þH4;5ðtÞ þ � � � ð12Þ

and simulate using the time-dependent Lie-Trotter-Suzuki
formulas ST ;2kðtÞ [58]. We show that

����ST ;2kðtÞ − expT

�
−i

Z
t

0

dvHðvÞ
����� ¼ Oðnt2kþ1Þ ð13Þ

where expT denotes the time-ordered matrix exponential.
Similar to the time-independent case, we find that the total
gate complexity is O(ðntÞ1þð1=2kÞ). See Ref. [50], Sec. V
for detailed discussions.
We also consider lattice Hamiltonians with periodic

boundary conditions H ¼ P
n−1
j¼1 Hj;jþ1 þH1;n, where

Hj;k represents a local term that acts nontrivially only on
qubits j and k. To simulate such a system, we decomposeH
as H ¼ Hbndry þHeven þHodd, where Hbndry ¼ H1;n.
Correspondingly, we also use a canonical product formula
with three exponentials per stage. With a similar analysis
for the open boundary condition, we find that the product-
formula error is Oðnt2kþ1Þ as expected.
A generalization of this approach allows us to simulate a

D-dimensional lattice Hamiltonian with nearly optimal gate
complexity. We use a 2D coloring of the edges of the lattice
to decompose the Hamiltonian into 2D terms, each of
which is a sum of commuting terms. We also extend the
definition of canonical product formulas to allow for 2D
exponentials per stage. An analysis of the local error
structure shows that this algorithm has gate complexity
O(ðLDtÞ1þð1=2kÞ=ϵð1=2kÞ) ¼ O(ðntÞ1þð1=2kÞ=ϵð1=2kÞ), where
n is the total number of lattice sites and L ¼ n1=D is the
linear size of the lattice.
Finally, our algorithm can also simulate lattice

Hamiltonians with constant-range interactions H ¼Pn−lþ1
j¼1 Hj;…;jþl−1. To achieve nearly optimal gate com-

plexity, we classify the Hamiltonian terms into the l groups

H½1� ¼ H1;…;l þHlþ1;…;2l þ � � �
H½2� ¼ H2;…;lþ1 þHlþ2;…;2lþ1 þ � � �
..
.

H½l� ¼ Hl;…;2l−1 þH2l;…;3l−1 þ � � � ð14Þ

and use a product formula with l elementary exponentials
per stage.
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Discussion.—The product-formula algorithm is arguably
the simplest approach to quantum simulation. We have
showed that this approach can simulate lattice
Hamiltonians with nearly optimal gate complexity. Our
algorithm invokes product formulas by ordering terms in an
even-odd pattern, which is conceptually easy to understand
and straightforward to implement. Beyond the one-dimen-
sional time-independent system with nearest-neighbor
interactions and open boundary conditions, our analysis
is also applicable to periodic boundary conditions, con-
stant-range interactions, higher dimensions, and the time-
dependent case, all with nearly optimal gate complexity.
Our result also gives product-formula bounds that are much
tighter in practice.
Recently, Haah, Hastings, Kothari, and Low (HHKL)

proposed another nearly optimal algorithm for lattice
simulation [12]. Instead of analyzing the product-formula
approach, they develop a new approach motivated by the
Lieb-Robinson bound [59,60], which quantifies how fast
information can propagate in a system with local inter-
actions. HHKL decompose the entire evolution into blocks,
where each block involves forward and backward evolution
on a small region. Using product formulas within each
block, their approach gives an ancilla-free algorithm
for lattice simulation with asymptotic gate complexity
ðntÞ1þoð1Þ. However, this results in a much larger constant
prefactor in practice than the pure product-formula algo-
rithm analyzed here (Ref. [50], Sec. VI).
The near optimality of HHKL depends essentially on the

use of a Lieb-Robinson bound. As noted in Ref. [12], it
may be difficult to apply this idea to Hamiltonians whose
interactions are described by general graphs. Our approach
directly exploits the commutation of lattice terms without
the help of Lieb-Robinson bounds, which we expect
could illuminate the simulation of other physical systems
[9,41–43].
Our local error analysis represents the product-formula

error as an integral of a linear combination of nested
commutators. Similar techniques have been used to estab-
lish the Lieb-Robinson bound and to study computational
complexity aspects of many-body physics [41,59–61]. We
leave it as an avenue for future work to explore whether
these techniques could find more applications in the study
of locality in quantum systems.
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