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Superconducting circuits have emerged as a powerful platform of quantum simulation, especially for
emulating the dynamics of quantum many-body systems, because of their tunable interaction, long
coherence time, and high-precision control. Here in experiments, we construct a Bose-Hubbard ladder with
a ladder array of 20 qubits on a 24-qubit superconducting processor. We investigate theoretically and
demonstrate experimentally the dynamics of single- and double-excitation states with distinct behaviors,
indicating the uniqueness of the Bose-Hubbard ladder. We observe the linear propagation of photons in the
single-excitation case, satisfying the Lieb-Robinson bounds. The double-excitation state, initially placed at
the edge, localizes; while placed in the bulk, it splits into two single-excitation modes spreading linearly
toward two boundaries, respectively. Remarkably, these phenomena, studied both theoretically and
numerically as unique properties of the Bose-Hubbard ladder, are represented coherently by pairs of
controllable qubits in experiments. Our results show that collective excitations, as a single mode, are not
free. This work paves the way to simulation of exotic logic particles by subtly encoding physical qubits and
exploration of rich physics by superconducting circuits.
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The dynamics of quantum many-body systems have
attracted a lot of interest in recent years [1]. In addition to
the conventional equilibrium physics, nonequilibrium sys-
tems have abundant unique phenomena, which require new
theoretical and experimental research tools. For a clean
system with a local Hamiltonian, the propagation of
information shows light-cone-like spreading limited by
Lieb-Robinson bounds [2]. Nevertheless, when sufficiently
strong disorder is applied to the systems, the quasiparticles
may be localized. Examples include the Anderson locali-
zation [3] in noninteracting systems, and many-body locali-
zation in interacting systems [4]. In the topological systems,
the localization can also emerge at the edges without
impurities [5–8]. To explore the dynamics of quantum
many-body systems, i.e., quantum simulation [9,10], syn-
thetic quantum systems provide a well-controlled platform,
owing to the ability of precise control of tunable interactions

and intrinsic dynamical process. Moreover, superconduct-
ing circuits [11,12], as a scalable system for quantum
computation, have been applied to many quantum-
simulation experiments, e.g., digital dynamical simulations
[13,14], many-body localization [15,16], quantum chem-
istry [17,18], topological phases [19–21], and demonstra-
tions of various quantum algorithms [22–27].
The Bose-Hubbard model [28,29], one of the most

prominent models in condensed matter physics, embraces
rich underlying physics of strong correlated systems, and
has been investigated experimentally in optical lattices
[30] and circuit quantum electrodynamics [12,31]. Many
novel dynamical phenomena of the Bose-Hubbard model
have been observed in 1D and 2D systems, such as the
dynamical behaviors of quantum phase transitions between
the superfluid and Mott insulators [32,33], the localization
with disordered local potentials [16], the stabilization of
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Mott insulators [34], and quantum walks [35–37]. Different
from the 1D case, theBose-Hubbard ladder can showunique
emergent effects, especially, topological effects, which have
been studied both theoretically and experimentally [38–40].
However, the dynamics of the Bose-Hubbard ladder model
are not studied extensively. Thus, we would like to ask
whether there are any special dynamical properties in the
ladder model, which are distinct to the 1D case.
In this Letter, we experimentally demonstrate a Bose-

Hubbard ladder, using 20 qubits on two legs of a 24-qubit
ladder superconducting processor, and investigate the
dynamics of the single- and double-excitation modes. For
the single-excitation case, we find it similar to a 1D chain,
displaying the linear propagation [35–37] limited by Lieb-
Robinson bounds. For the double-excitation case, we
observe the localization of boundary collective excitations,
which is a unique property of the Bose-Hubbard ladder.
However, we find that the double-excitation mode is not
stable in the bulk; instead, it splits into two single-excitation
modes spreading linearly towards both sides, respectively.
These phenomena show that the Bose-Hubbard ladder is not
equivalent to the free-fermion system in the large-U regime,

which is distinct to the 1D Bose-Hubbard chain. They will
also help us further understand the mechanism and the
nonequilibrium behaviors of strongly correlatedmany-body
systems. The experimental observation of the distinctions
between bulk and edge depends on that the ladder should be
long enough.Our 20-qubit ladder of superconducting device
satisfies this condition, and the boundary effects can be
clearly identified. Furthermore, our experimental platform
enables us to explore many other interesting topics in
quantum computation and quantum simulations in different
structures of lattices.
Our superconducting circuits, shown schematically in

Fig. 1(a), can be described by the Bose-Hubbard ladder
with a Hamiltonian (ℏ ¼ 1)

H ¼
X

jν

Jjνðâ†jνâðjþ1Þν þ H:c:Þ þ
X

j

JjRðâ†jAâjB þ H:c:Þ

þ U
2

X

jν

n̂jνðn̂jν − 1Þ þ
X

jν

hjνn̂jν; ð1Þ

(a)

(b)

FIG. 1. Experimental setup. (a) Circuit diagram of the device. There are 24 superconducting transmon qubits (Q1A-Q10A, Q1B-Q10B
and Qa-Qd) constituting a ladder [41–45]. The nearest-neighbor hopping is realized by the capacitive coupling between qubits, and the
negative anharmonicity U of each qubit gives the on-site attractive interaction. The frequency of each qubit is tunable by individual
microwave driving through the flux-bias line. Readout resonators are separated into four groups, and the resonators in each group share a
microwave transmission line for multiplexed readout. More experimental details of our system are presented in the Supplemental
Material [46]. In our experiments, the middle 20 qubits (Q1A-Q10A, Q1B-Q10B) are biased to the working frequency 4.8 GHz. The other
four qubits (Qa-Qd) are always idled with frequencies 3.5, < 3.5, 5.4, and < 3 GHz, respectively. Thus, Qa-Qd are far away from the
working frequency, and thus, a 20-qubit ladder is employed. (b) The image of the corresponding Bose-Hubbard ladder with 6 rungs. The
red ball represents the photon (the excitation of the qubit), which can tunnel to the nearest-neighbor sites (red arrows). We label two
qubits, which share the same rung (black box), as a unit cell Cj.
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where j denotes the number of rung, ν ¼ A=B denotes the
leg A=B, â†jν (âjν) is the bosonic creation (annihilation)

operator, n̂jν ≡ â†jνâjν is the number operator, hjν is the
tunable local field strength, set to be the same during the
quench dynamics, U is the on-site interaction, Jjν is
the nearest-neighbor coupling strength of the leg ν, and
JjR is the coupling strength of two qubits at the rung j.
The excitation in the superconducting qubit can be regarded
as a photon in the microwave regime [16,35]. For conven-
ience, we regard two sites, which share the same rung, i.e.,
QjA andQjB, as a unit cell labeled asCj, with j ¼ 1;…; 10.
Then, this system can also be taken as a quasi-1D model,
see Fig. 1(b).
In our superconducting circuits, the nearest-neighbor hop-

ping strength Jjν=2π ≃ JjR=2π ≃ 12 MHz, and the anhar-
monicity U=2π ≃ −230 MHz. Because jUj=Jjν ≃ 19 ≫ 1,
two photons can hardly bunch at the same site, indicating that
the photons in this system behave as hard-core bosons.
Therefore, the state of Cj can be approximatively expanded

by four basis j00ij, j01ij ≡ â†jBj00ij, j10ij ≡ â†jAj00ij, and
j11ij ≡ â†jAâ

†
jBj00ij, where j00ij is the vacuum state, rep-

resenting that there is no photon at Cj. Here, we regard j01ij
and j10ij as single-excitation states, and j11ij as the double-
excitation state. In this case, the nonlinear term ofH in Eq. (1)
vanishes, and the system reduces to a single-particle problem.
Thus, with JjA ≃ JjB assumed, we can write an effective
Hamiltonian of H as [46]

Heff¼
X10

j¼1

J̃jðd̂†j d̂jþ1þ f̂†j f̂jþ1þH:c:Þþ
X10

j¼1

μjðd̂†j d̂j− f̂†j f̂jÞ;

ð2Þ

where d̂j ≡ ðâjA þ âjBÞ=
ffiffiffi
2

p
, f̂j ≡ ðâjA − âjBÞ=

ffiffiffi
2

p
, J̃j≡

ðJjA þ JjBÞ=2, and μj ≡ JjR. Then, we can find that there
are two decoupled free modes in the system. Moreover, note
that with the qubit representation, d̂†j j00ij¼ðj10ijþj01ijÞ=ffiffiffi
2

p
and f̂†j j00ij ¼ ðj10ij − j01ijÞ=

ffiffiffi
2

p
are triplet state and

singlet state, respectively.
First, we investigate the quench dynamics of the system

with single-excitation initial states. During the time evo-
lution, we measure the probability distribution of the
single-excitation state, Pse

j ≡ P01
j þ P10

j , by simultaneous
single-shot readouts of two qubits at Cj, where P01

j and P10
j

are the probabilities of single-excitation states j01ij and
j10ij of Cj, respectively. In Figs. 2(a) and 2(b), we prepare
a single-excitation state j10i1 localized at the left edge (C1)
and j10i6 at the central of the bulk (C6), by exciting the
corresponding qubits after the system’s initialization.
In Fig. 2(c), we prepare a state j10i1 ⊗ j01i10 with two
single excitations localized at both edges (C1 and C10).
For these three cases, we observe the linear propagation of
single excitations. In Figs. 2(d)–2(f), we compare the
corresponding ideally theoretical predictions with exper-
imental data in Figs. 2(a)–2(c). The experimental results
agree well with the theoretical predictions.

(a) (b) (c)

(g)

(h)

(d) (e) (f)

FIG. 2. Time evolutions of single-excitation states up to 100 ns. Time evolutions of the probability distributions of single excitations
Pse
j starting with one initial single-excitation state j10i1 and j10i6 at (a) the leftmost cell C1 and (b) the central cell C6, and the states

j10i1 ⊗ j01i10 of two initial single excitations at (c) C1 and C10, respectively, are shown. For (b), C1 is at the idle frequency to be turned
off to make C6 central. (d)–(f) are for the corresponding numerical results for comparisons with (a)–(c). In the numerical simulation,
decoherence is not considered, and the experimental parameters are used. (g) Time evolutions of the probability distributions of (a) for
C2–C6. The scattering points are experimental data, while the solid curves are for the corresponding Gaussian fitting analysis. (h) The
linear fitting analysis of (g) between the time of the first peak of the probability distribution and the cell distance. The experimental data
(blue cross) are obtained from the Gaussian fitting curves, while the theoretical ones (orange stars) are obtained from the numerical
results. We calculate the experimental group velocity as vExg ¼ 112.4 cells=μs, and theoretic one as vThg ¼ 123.5 cells=μs.
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In the single-particle representation, the effective Hami-
ltonian in Eq. (2) describes two decoupled 1D free hardcore-
boson systems. These two free modes are both linear
combinations of two single-excitation states, corresponding
to the Bell states of two qubits. Hence, the propagation of
a single excitation is linear and limited by the Lieb-
Robinson bounds [2] with the maximal group speed vmax

g ¼
145.9 cells=μs [46,47], see Fig. 2(g). To extract the group
propagation velocity vg of the single excitation, we use the
linear fitting between the time of the first probability peak and
the cell distance, as shown in Fig. 2(h). The experimental
group velocity is vExg ¼ 112.4 cells=μs, and the theoretical
one is vThg ¼ 123.5 cells=μs by using device parameters,
between which the difference may result from unbalanced
qubits’ frequencies during the experiments.
Then, we study the dynamics of double excitations,

starting with only one double-excitation initial state j11ij
at Cj after system initialization. In Figs. 3(a) and 3(b),

theoretical and experimental evolutions of the probability
distributions of double-excitation states P11

j for qubit-qubit
unit cells are shown, where the initial double-excitation state
is localized at the leftmost cell (C1). By analyzing the
distributions P11

j , we can find that the evolution of the
double-excitation state displays boundary localization,which
is quite distinct from the case of the single-excitation states.
When the initial double-excitation state is in the bulk, e.g.,
at the central cell (C6) as shown in Figs. 3(c) and 3(d), we can
observe no localization. Instead, this double-excitation state
splits into two independent single-excitation modes, spread-
ing linearly toward two edges, respectively, see Figs. 3(e)
and 3(f), which shows photons’ antibunching.
In our system, since the large-U condition is satisfied, the

photons can exhibit fermionization and behave like free
fermions, implying negligible double occupancy at a single
qubit.However, the edge localizationof the double-excitation
state cannot be described by free fermions [46]. In contrast
to the single-excitation case, the dynamics of the double-
excitation states cannot be described by the single-particle
representation, and the correlation of two modes neglected
in Eq. (2) should be considered. In fact, in the large-U limit,
the Bose-Hubbard model more likely conforms to the XX
spin systems. In the Supplemental Material [46], we present
a phenomenological interpretation of the double-excitation
dynamics in the perspective of the XX spin ladder.
Then, to see how the on-site interaction strength

U affects the edge state localization, we present in
Fig. 4 the numerical results of the dynamics of the ideal

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Time evolutions of double-excitation states up to
100 ns. Time evolutions of the probability distributions of double
excitations P11

j with initial double-excitation states j11i1 and
j11i6 at: (a),(b) C1 and (c),(d) C6, respectively, are plotted. In (a)
and (c), experimental results are shown; in (b) and (d), corre-
sponding numerical results are shown. Similarly, C1 is at the idle
frequency to be turned off for the central localized initial state in
(c),(d). The (e) experimental and (f) theoretical evolutions of the
probability distributions of single excitations Pse

j for the central
localized initial state in (c),(d) are shown, respectively.

FIG. 4. Numerical results of time evolutions up to 100 ns of the
double-excitation states of 7 cells for different regimes of
interaction strength with initial double-excitation states at C1.
Here, we choose J=2π ¼ 12 MHz, and U=J ¼ 1, 5, 10, 20,
respectively.
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Bose-Hubbard ladder (JjA ¼ JjB ¼ JjR ¼ J) for different
regimes of interaction strength. We find that the edge
localization of double-excitation states can only exist in the
large-U regime. The edge localization disappears in the
small-U regime, because of large probabilities of bosons’
bunching at the same sites [46], which can further show that
the edge localization results from the interactions.
In addition, we study the correlation functions of the

ground states of the XX spin ladder by the density matrix
renormalization group (DMRG) methods [46]. The simu-
lation results clearly reveal that for the double excitations,
their edge correlations decay much faster than that of the
bulk, and this different scaling behavior shows that the
ground state also has the similar boundary effects. This is a
phenomenon, absent from free-fermion systems but rooted
in the interaction effect, and our 20-qubit experimental
system can really capture it.
In conclusion, we have theoretically and experimentally

studied the quench dynamics of the Bose-Hubbard ladder on
the superconducting circuits. Benefiting from the precise
control and readout of a 24-qubit superconducting quantum
processor, we directly observe (i) the linear propagation of
single excitations, (ii) the localization of the edge double
excitations, and (iii) the instability of bulk double excitations
with a 20-qubit ladder. Our experiments show that collective
excitations are not free on the Bose-Hubbard ladder, which
cannot be described in the single-particle picture.Our results
may be useful for further studies on the statistical properties
of particles in strongly correlated systems. Moreover, in
addition to recent work on the Bose-Hubbard chains [35],
our platform provides the possibilities for further explora-
tions of the distinctions between chain and ladder models,
e.g., magnon scattering, the scaling of correlation functions,
and entanglement entropies [48–50].
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[13] Y. Salathé, M. Mondal, M. Oppliger, J. Heinsoo, P.
Kurpiers, A. Potočnik, A. Mezzacapo, U. Las Heras, L.
Lamata, E. Solano, S. Filipp, and A. Wallraff, Digital
Quantum Simulation of Spin Models with Circuit Quantum
Electrodynamics, Phys. Rev. X 5, 021027 (2015).

[14] R. Barends et al., Digital quantum simulation of fermionic
models with a superconducting circuit, Nat. Commun. 6,
7654 (2015).

[15] K. Xu, J. J. Chen, Y. Zeng, Y. R. Zhang, C. Song, W. X. Liu,
Q. J. Guo, P. F. Zhang, D. Xu, H. Deng, K. Q. Huang, H.
Wang, X. B. Zhu, D. N. Zheng, and H. Fan, Emulating
Many-Body Localization with a Superconducting Quantum
Processor, Phys. Rev. Lett. 120, 050507 (2018).

[16] P. Roushan et al., Spectroscopic signatures of localization
with interacting photons in superconducting qubits, Science
358, 1175 (2017).

[17] P. J. J. O’Malley et al., Scalable Quantum Simulation of
Molecular Energies, Phys. Rev. X 6, 031007 (2016).

[18] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M.
Brink, J. M. Chow, and J. M. Gambetta, Hardware-efficient
variational quantum eigensolver for small molecules and
quantum magnets, Nature (London) 549, 242 (2017).

[19] Y. P. Zhong, D. Xu, P. Wang, C. Song, Q. J. Guo, W. X. Liu,
K. Xu, B. X. Xia, C.-Y. Lu, S. Han, J.-W. Pan, and H. Wang,
Emulating Anyonic Fractional Statistical Behavior in a
Superconducting Quantum Circuit, Phys. Rev. Lett. 117,
110501 (2016).

[20] C. Song, D. Xu, P. Zhang, J. Wang, Q. Guo, W. Liu, K. Xu,
H. Deng, K. Huang, D. Zheng, S.-B. Zheng, H. Wang, X.
Zhu, C.-Y. Lu, and J.-W. Pan, Demonstration of Topological

PHYSICAL REVIEW LETTERS 123, 050502 (2019)

050502-5

https://doi.org/10.1038/nphys3215
https://doi.org/10.1007/BF01645779
https://doi.org/10.1007/BF01645779
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1126/science.1177838
https://doi.org/10.1126/science.1177838
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1103/PhysRevX.5.021027
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1103/PhysRevLett.120.050507
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevLett.117.110501
https://doi.org/10.1103/PhysRevLett.117.110501


Robustness of Anyonic Braiding Statistics with a Super-
conducting Quantum Circuit, Phys. Rev. Lett. 121, 030502
(2018).

[21] E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S.
Martin, N. Y. Yao, and I. Siddiqi, Observing Topological
Invariants using Quantum Walks in Superconducting
Circuits, Phys. Rev. X 7, 031023 (2017).

[22] E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A.
Megrant, P. OMalley, D. Sank, A. Vainsencher, J. Wenner,
T. White, Y. Yin, A. N. Cleland, and J. M. Martinis,
Computing prime factors with a Josephson phase qubit
quantum processor, Nat. Phys. 8, 719 (2012).

[23] M. Gong et al., Genuine 12-Qubit Entanglement on a
Superconducting Quantum Processor, Phys. Rev. Lett.
122, 110501 (2019).

[24] R. Barends et al., Digitized adiabatic quantum computing
with a superconducting circuit, Nature (London) 534, 222
(2016).

[25] Y. Zheng, C. Song, M. C. Chen, B. Xia, W. Liu, Q. Guo, L.
Zhang, D. Xu, H. Deng, K. Huang, Y. Wu, Z. Yan, D.
Zheng, L. Lu, J. W. Pan, H. Wang, C. Y. Lu, and X. Zhu,
Solving Systems of Linear Equations with a Superconduct-
ingQuantumProcessor, Phys. Rev. Lett. 118, 210504 (2017).

[26] C. Song, K. Xu, W. X. Liu, C. P. Yang, S. B. Zheng,
H. Deng, Q. W. Xie, K. Q. Huang, Q. J. Guo, L. B. Zhang,
P. F. Zhang, D. Xu, D. N. Zheng, X. B. Zhu, H. Wang,
Y. A. Chen, C. Y. Lu, S. Y. Han, and J. W. Pan, 10-Qubit
Entanglement and Parallel Logic Operations with a Super-
conducting Circuit, Phys. Rev. Lett. 119, 180511 (2017).

[27] C. Song, K. Xu, H. Li, Y. Zhang, X. Zhang, W. Liu, Q. Guo,
Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan, D. Zheng,
D. Wang, H. Wang, and S. Zhu, Observation of multi-
component atomic Schrödinger cat states of up to 20 qubits,
arXiv:1905.00320.

[28] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.
Fisher, Boson localization and the superfluid-insulator
transition, Phys. Rev. B 40, 546 (1989).

[29] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M.
Rigol, One dimensional bosons: From condensed matter
systems to ultracold gases, Rev. Mod. Phys. 83, 1405
(2011).

[30] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P.
Zoller, Cold Bosonic Atoms in Optical Lattices, Phys. Rev.
Lett. 81, 3108 (1998).

[31] S. Hacohen-Gourgy, V. V. Ramasesh, C. De Grandi, I.
Siddiqi, and S. M. Girvin, Cooling and Autonomous Feed-
back in a Bose-Hubbard Chain with Attractive Interactions,
Phys. Rev. Lett. 115, 240501 (2015).

[32] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch, Quantum phase transition from a superfluid to a Mott
insulator in a gas of ultracold atoms, Nature (London) 415,
39 (2002).

[33] M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch,
Collapse and revival of the matter wave field of a Bose-
Einstein condensate, Nature (London) 419, 51 (2002).

[34] R. Ma, B. Saxberg, C. Owens, N. Leung, Y. Lu, J. Simon,
and D. I. Schuster, A dissipatively stabilized Mott insulator
of photons, Nature (London) 566, 51 (2019).

[35] Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C.
Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng,

K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan,
X. Zhu, and J.-W. Pan, Strongly correlated quantum walks
with a 12-qubit superconducting processor, Science 364,
753 (2019).

[36] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schau,
T. Fukuhara, C. Gross, I. Bloch, C. Kollath, and S. Kuhr,
Light-cone-like spreading of correlations in a quantum
many-body system, Nature (London) 481, 484 (2012).

[37] P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli,
P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, Strongly
correlated quantum walks in optical lattices, Science 347,
1229 (2015).

[38] E. Orignac and T. Giamarchi, Meissner effect in a bosonic
ladder, Phys. Rev. B 64, 144515 (2001).

[39] A. Petrescu and K. L. Hur, Bosonic Mott Insulator with
Meissner Currents, Phys. Rev. Lett. 111, 150601 (2013).

[40] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B.
Paredes, and I. Bloch, Observation of chiral currents with
ultracold atoms in bosonic ladders, Nat. Phys. 10, 588 (2014).

[41] J. Q. You, X. Hu, S. Ashhab, and F. Nori, Low-decoherence
flux qubit, Phys. Rev. B 75, 140515(R) (2007).

[42] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from
the Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[43] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank,
E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell,
Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P.
O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N.
Korotkov, A. N. Cleland, and J. M. Martinis, Superconduct-
ing quantum circuits at the surface code threshold for fault
tolerance, Nature (London) 508, 500 (2014).

[44] J. Y. Mutus, T. C. White, R. Barends, Yu Chen, Z. Chen,
B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, C.
Neill, P. J. J. O’Malley, P. Roushan, D. Sank, A. Vainsencher, J.
Wenner,K.M.Sundqvist,A. N.Cleland, and JohnM.Martinis,
Strong environmental coupling in a Josephson parametric
amplifier, Appl. Phys. Lett. 104, 263513 (2014).

[45] E. Lucero, J. Kelly, R. C. Bialczak, M. Lenander, M.
Mariantoni, M. Neeley, A. D. O’Connell, D. Sank, H. Wang,
M. Weides, J. Wenner, T. Yamamoto, A. N. Cleland, and J.M.
Martinis, Reduced phase error through optimized control of a
superconducting qubit, Phys. Rev. A 82, 042339 (2010).

[46] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.123.050502 for the de-
tails of the experimental setup, approaches of qubit control,
some theoretical derivation, and additional numerical
simulation.

[47] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R.
Blatt, and C. F. Roos, Quasiparticle engineering and en-
tanglement propagation in a quantum many-body system,
Nature (London) 511, 202 (2014).

[48] E. Dagotto and T. M. Rice, Surprises on the way from one-
to two-dimensional quantum magnets: The ladder materials,
Science 271, 618 (1996).

[49] L. Amico, R. Fazio, A.Osterloh, andV.Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[50] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area
laws for the entanglement entropy, Rev. Mod. Phys. 82, 277
(2010).

PHYSICAL REVIEW LETTERS 123, 050502 (2019)

050502-6

https://doi.org/10.1103/PhysRevLett.121.030502
https://doi.org/10.1103/PhysRevLett.121.030502
https://doi.org/10.1103/PhysRevX.7.031023
https://doi.org/10.1038/nphys2385
https://doi.org/10.1103/PhysRevLett.122.110501
https://doi.org/10.1103/PhysRevLett.122.110501
https://doi.org/10.1038/nature17658
https://doi.org/10.1038/nature17658
https://doi.org/10.1103/PhysRevLett.118.210504
https://doi.org/10.1103/PhysRevLett.119.180511
http://arXiv.org/abs/1905.00320
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.115.240501
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/nature00968
https://doi.org/10.1038/s41586-019-0897-9
https://doi.org/10.1126/science.aaw1611
https://doi.org/10.1126/science.aaw1611
https://doi.org/10.1038/nature10748
https://doi.org/10.1126/science.1260364
https://doi.org/10.1126/science.1260364
https://doi.org/10.1103/PhysRevB.64.144515
https://doi.org/10.1103/PhysRevLett.111.150601
https://doi.org/10.1038/nphys2998
https://doi.org/10.1103/PhysRevB.75.140515
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1038/nature13171
https://doi.org/10.1063/1.4886408
https://doi.org/10.1103/PhysRevA.82.042339
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050502
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050502
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050502
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050502
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050502
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050502
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050502
https://doi.org/10.1038/nature13461
https://doi.org/10.1126/science.271.5249.618
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277

