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We study the spectrum of elementary excitations of a dipolar Bose gas in a three-dimensional anisotropic
trap across the superfluid-supersolid phase transition. Theoretically, we show that, when entering the
supersolid phase, two distinct excitation branches appear, respectively associated with dominantly crystal
and superfluid excitations. These results confirm infinite-system predictions, showing that finite-size
effects play only a small qualitative role, and connect the two branches to the simultaneous occurrence of
crystal and superfluid orders. Experimentally, we probe compressional excitations in an Er quantum gas
across the phase diagram. While in the Bose-Einstein condensate regime the system exhibits an ordinary
quadrupole oscillation, in the supersolid regime we observe a striking two-frequency response of the
system, related to the two spontaneously broken symmetries.
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Supersolidity—a paradoxical quantum phase of matter
that combines crystal rigidity and superfluid flow—was
suggested more than half a century ago as a paradigmatic
manifestation of a state in which two continuous sym-
metries are simultaneously broken [1]. In a supersolid, the
spontaneously broken symmetries are the gauge symmetry,
associated with the phase coherence in a superfluid, and the
translational invariance, signalizing crystalline order. The
striking aspect is that, in a supersolid of indistinguishable
bosons, the same particles are participating in developing
such two apparently antithetical, yet coexisting, orders.
Originally predicted in quantum solids with mobile bosonic
vacancies [2—4], the search for supersolidity has fueled
research across different areas of quantum matter from
condensed matter to atomic physics, including quantum
gases with nonlocal interparticle interactions [5—19].

Recent experiments have revealed that axially elongated
dipolar quantum gases can undergo a phase transition from
a regular Bose-Einstein condensate (BEC), possessing a
homogeneous density in the local-density-approximation
sense, to a state with supersolid properties, where density
modulation and global phase coherence coexist [15-17].
Such experiments, complementing the ones with BECs
coupled to light [20-22], have opened a whole set of
fundamental questions, covering the very real meaning of
superfluidity in a supersolid state, its shear transport, and
phase rigidity.

Of particular relevance is the study of the spectrum of
elementary excitations, which governs the system response
to perturbations [23-25]. Typically, phase transitions occur
in concomitance with drastic modifications of the excitation
spectra—as in the case of the emergence of roton excita-
tions in He II or the phononic dispersion for BECs—and
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similar dramatic changes are expected when crossing the
superfluid-supersolid transition. Theoretical studies of uni-
form (infinite) gases with periodic boundary conditions and
soft-core [26-28] or dipolar interactions [14,29,30] have
shown two distinct branches appearing in the excitation
spectrum of a supersolid state—one for each broken
symmetry. Their coexistence has been identified as an
unambiguous proof of supersolidity, being the direct
consequence of the simultaneous presence of superfluid
and crystalline orders [2,26,27,31].

An important issue is to understand if these trademarks
survive—and can be measured—in the experimentally
relevant regimes of a finite-size quantum gas, confined
in all three spatial dimensions. In this Letter, we address
these points by performing full spectrum calculations and
by experimentally exciting collective modes in an erbium
quantum gas. Both the theory and experiment show the
existence of two distinct classes of excitations, one con-
nected to crystal modes and the other to phase modes,
providing the finite-size equivalent of the two-branches
spectrum for infinite systems.

In our study, we consider a three-dimensional dipolar
quantum gas confined in an axially elongated (y) harmonic
trap with transverse orientation (z) of the atomic dipoles.
These systems are well described by an extended Gross-
Pitaevskii equation (EGPE), including nonlinear terms,
accounting for contact interactions depending on the scatter-
ing length a,, the anisotropic long-range dipole-dipole
interaction (DDI), and quantum fluctuations in the form of
a Lee-Huang- Yang type of correction [12,14-17,19,32-36];
see also Ref. [37]. We calculate ground-state wave functions
wo(r) by minimizing the energy functional resulting from
the EGPE using the conjugate-gradients technique [46].
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FIG. 1.

Axial excitation spectra of a trapped dipolar quantum gas across the BEC-supersolid-ID phase transition. The trap frequencies

are 27z x (260,29.6,171) Hz. The upper (lower) row shows calculations for a '**Dy (1%°Er) quantum gas of 4 x 10* (5 x 10*) atoms in
the BEC (a),(b), supersolid (c)—(f), and ID (g),(h) regimes, together with the corresponding ground-state density profiles (insets). (a), (c),
(e), and (g) correspond to a; = (92,91, 90, 81)ay, and (b), (d), (f), and (h) to a, = (50.8,50.5, 50, 48)ay, respectively. In (e) and (f), the
dashed and dash-dotted lines are guides to the eyes, indicating the two excitation branches. The color map indicates the calculated DSF,
and [/, is the harmonic oscillator length along the dipoles’ direction.

As shown in Fig. 1 (insets), the ground state evolves with
decreasing a, from a regular BEC (a), (b) to a supersolid
state with axial density-wave modulation (c)—(f) and finally
to an insulating array of independent droplets (ID) (g), (h)
[7,14,15,17,27].

The spectrum of elementary excitations is calculated by
numerically solving the Bogoliubov—de Gennes equations,
which are obtained from an expansion of the macro-
scopic wave function as w(r,t)= [y (r)+n(ue "+
vye’t/M)] e~ with n < 1 and linearizing the EGPE around
wo [13,25,46,47]. Here, p is the ground state’s chemical
potential. By solving the resulting eigenvalue problem,
we find a set of discrete modes, numbered by /, of energy
€; = hw; and amplitudes u; and v;. We calculate the
dynamic structure factor (DSF) S(k,w), which informs
on the system’s response when its density is perturbed at a
given modulation momentum k and with an energy
hw [25,48,49]. Whereas in the absence of an external trap
the spectrum is continuous and the DSF is a o-peak
resonance at the Bogoliubov mode (w, k;), the confining
potential yields instead a discretization of the excitation
spectrum and a k broadening in S(k, w). For a given energy
(i.e., a single mode), finite-size effects may even yield
several peaks in k; see, e.g., three-peak structures at large
energy in Figs. 1(a) and 1(b). For the considered param-
eters, these finite-size effects are more pronounced in Er
than Dy, since the latter exhibits a larger number of maxima
in the density-modulated phases, rendering its excitation
spectrum more reminiscent of the infinite-system case;
see Fig. 1.

Figure 1 shows the calculated excitation spectrum for
ground states in the regular BEC, the supersolid, and the ID
phases for a Dy (upper row) and Er (lower row) quantum
gas. In the BEC regime close to the supersolid transition
[Figs. 1(a) and 1(b)], the spectrum of excitations shows a
single excitation branch with the characteristic phonon-
maxon-roton dispersion of a BEC [50-54], as recently
measured [55]. When the roton fully softens (at a;, = a,*),
the ground state becomes density modulated with a wave
number close to the roton one, k.. Here, the excitation
spectrum develops additional structures, marked by the
appearance of nearly degenerate modes [Figs. 1(c) and
1(d)]. When lowering a,, we find that these modes start to
separate in energy, where some harden and the others
soften, and two excitation branches become visible
[Figs. 1(e) and 1(f)]. This result resembles that of infinite
systems, where the broken translational and gauge sym-
metry are each associated with the appearance of one
excitation branch [14,26,27]. Additionally, we observe that
the spectrum acquires a periodic structure, reminiscent of
Brillouin zones in a crystal, with reciprocal lattice constant
k ~ k.. Modes with an energy higher than the maxon
(energy maximum at k < k,,) seem to have a single-
droplet-excitation character, and they will be the subject
of future investigations. When further decreasing a,; < a,*,
the lower-lying branch decreases both in energy and in DSF
values, whereas the opposite occurs for the higher branch.
Eventually, when reaching the ID regime, the lower branch
progressively vanishes, underlying the disappearance of
global superfluidity [Figs. 1(g) and 1(h)].
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We focus on the properties of the excitation spectrum
in the supersolid regime. The interesting question is
how the two branches relate to the two orders in the
systems, crystal and superfluid. To gain insight, we
study the system’s dynamics when a single mode [ is
excited with amplitude 7 <1 by writing w(t)e ~

VIwol? + 2ndp, cos w te=m7ism it in terms of density per-
turbations 8p; = (u; + vj)|wo| and phase perturbations
8¢; = (u; — v7)/|wo|. The subsequent time evolution of
the axial density profile is shown in Figs. 2(a)-2(c) for three
relevant cases. For simplicity, only the two extremes of the
mode oscillation are shown. The mode character can be
understood by noting that phase gradients correspond to
mass currents. Large gradients inside a density peak imply
motion of the density peak [e.g., Fig. 2(a)] and relate to
crystal modes. Large phase gradients between density peaks
signify a superfluid current of particles tunneling from one
density peak to another [e.g., Fig. 2(b)] and are associated
with phase modes. However, in our system, the phase or
crystal mode classification is not strict, and we find that these
two characters mix; see Figs. 2(a)-2(c). Particularly, we
observe both behaviors simultaneously in Fig. 2(c). Such a
mixing is expected from the long-range nature of the DDI,
coupling density, and position of the peaks [26,27]. Note that
the character of the mode can change with a,. For instance,
the mode in Fig. 2(c) develops an almost pure crystal
character for decreasing a,. To quantify a mode’s character,
we plot in Fig. 2(d) the DSF spectrum at a fixed a,, colored
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FIG. 2. Evolution of three different even modes of the system
calculated for 5 x 10* Er atoms at a, = 49.8a,: (a) fourth-,
(b) second-, and (c) third-lowest-lying even modes in energy with
frequencies (67.4, 40.3, 49.8) Hz, corresponding to crystal,
phase, and mixed modes, respectively. Each panel shows n =
[w(0,,0,1)? for t = n/2w, and t = 37/2w; with n = 0.15 and
the corresponding 5¢(0, y, 0). (d) DSF for the same setting as in
(a)—(c), where the modes are colored according to their associated
phase (red) or crystal (blue) character via C [37].

according to the ratio C of phase variances inside, and
between the density peaks [37]. This allows us to differentiate
the dominant character of the two branches, being phase type
for the lower branch and crystal type for the upper one.

To test our predictions, we experimentally study the
collective excitations in an erbium quantum gas across the
BEC-supersolid-ID phases. We prepare a BEC at a, = 64q,,.
The atoms are confined in an axially elongated optical-
dipole trap of harmonic frequencies 27 X (v, vy, v,) =
27 % (259(2),30(1),170(1)) Hz and polarized along z by
an external magnetic field; see Refs. [13,17]. To probe our
system, we perform standard absorption imaging after 30 ms
of time-of-flight expansion, yielding measurements of the
momentum space density n(k,, k) [37]. Using the tunability
of the contact interaction via magnetic Feshbach resonances
[56], we can prepare the system at desired locations in the
phase diagram in the BEC, supersolid, or ID phase by linearly
ramping down a, in 20 ms to the target value. We then allow
the system to stabilize for 10 ms. At this point, we record an
atom number of typically 5 x 10* for the supersolid regime.
We confirmed the relevant a, ranges by repeating the matter-
wave interferometric analysis of Ref. [17]. While in the BEC
region the momentum distribution shows a regular, nearly
Gaussian single peak, in the supersolid regime the in-trap
density modulation gives rise to coherent interference
patterns along k,, consisting of a central peak with two
lower-amplitude side peaks; see Fig. 3(a).

After preparing the system in the desired phase, we
excite collective modes in the gas by suddenly reducing the
axial harmonic confinement to 10% of its initial value (i.e.,
vy =3 Hz) for 1 ms, before restoring it again. The atomic
cloud is subsequently held for a variable time #,, before
releasing it from the trap and recording the time evolution
of n(k,, k). As the lifetime of the supersolid state is limited
to around 40 ms [17], we focus on ¢, <30 ms. As
expected, in the BEC phase, we predominantly observe
an oscillation of the axial width, connected to the lowest-
lying quadrupole mode [25]. In the supersolid regime, the
situation is more complex; see Figs. 1(c)-1(f). Here,
multiple modes, of both crystal and phase character, can
be simultaneously populated, resulting in a convoluted
dynamics of the interference pattern.

We therefore employ a model-free statistical approach,
known as principal component analysis (PCA) [57], to
study the time evolution of the measured interference
patterns at a fixed a,. This method has been successfully
used to study e.g., matter-wave interference [58] and
collective excitations [59] in ultracold-gas experiments.
The PCA analyzes the correlations between pixels in a set
of images, decomposes them into statistically independent
components, and orders these principal components (PCs)
according to their contributions to the overall fluctuations
in the dataset.

In a dataset probing the system dynamics after an
excitation, the PCA can identify the elementary modes
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FIG. 3. (a) Example of a measured mean interference pattern in

the renormalized central cut of the density distribution n(k,) for
t, = 5 ms in the supersolid regime at a, = 49.84, (filled circles)
and in the BEC regime at a, = 51.7a, (open circles). (b)—(d)
PCA results at a;, = 49.8ay. (b) Time evolution of the weights of
PCI1 (filled circles) and PC2 (open circles) together with their sine
fit. Error bars denote the standard error of the mean. (c),(d)
Evolution of the partially recomposed n(k,) accounting for the
population of PC1 (c) and PC2 (d) only. (e),(f) Calculated time
evolution of n(k,) from excitation of the mode shown in
Figs. 2(b) and 2(c), respectively, and using # = 0.15.

with the PC weights in the individual images exhibiting
oscillations at the mode frequencies [37,59]. We apply the
PCA to the time evolution of the interference patterns after
the trap excitation. Figure 3(b) shows the PCA results in the
supersolid regime at a, = 49.8a,. We identify two leading
PCs, which we label as PC1 and PC2. Their weights
oscillate with different amplitudes and at distinct frequen-
cies, namely, 41(1) Hz for PC1 and 52(5) Hz for PC2. The
comparison between the measured frequencies and the
theoretically calculated mode energies indicates that, fol-
lowing our trap excitation, the second- and third-lowest-
lying even modes are simultaneously populated. As shown
in Figs. 2(b) and 2(c), these modes possess a phase and a
mixed character, respectively. Note that we apply an overall
shift of —4.3a, to the a, value for the experimental data; for
more details, see the discussion in Refs. [55,60].

To visualize the role of each PC on the interference-
pattern dynamics, we apply a partial recomposition of the
images, accounting only for the PC of interest; see
Ref. [37]. The effect of PC1 on the axial dynamics is
shown in Fig. 3(c), mainly being an axial breathing of the
central peak, accompanied by weaker in-phase breathing of
the side peaks. Instead, PC2 exhibits a dominant variation
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FIG. 4. Comparison between the mode energy obtained from
the theory calculations and the energies extracted from the PCs
(circles). The gradual color code of the theory lines represents the
relative strength of R; going from strong (red) to no (gray)
coupling. Error bars denote one standard deviation from the fit.
The background color indicates the BEC, supersolid, and ID
regions (see upper labels), identified using a matter-wave
interferometric analysis of the experimental data [17].

of the side-peak amplitude; see Fig. 3(d). These results
show a good agreement with the calculated time evolutions
of the interference patterns for the second and third even
modes, shown in Figs. 3(e) and 3(f).

Finally, we study the evolution of the modes across the
BEC to supersolid and ID phases. We repeat the collective
excitation measurements for various a,, and, using the
PCA, we extract the oscillation frequencies of all the
leading PCs. Figure 4 shows our experimental results
together with the mode tracking from the spectrum calcu-
lations. For a give elementary mode /, we plot w; as well as
the response amplitude R, = mw?(¢]$?|0)/2hw,;, which
indicates the probability to be excited by our trap-excitation
scheme. For completeness, the figure shows both even and
odd modes, although only even modes are coupled to our
trap-excitation scheme. Here, |0) and |£) denote, respec-
tively, the ground and excited states of interest, and y is the
axial position operator.

In the BEC regime, besides the roton mode that
progressively softens with decreasing a, the other modes
show a regular spacing in energy and are nearly constant
with a,. In both the theory and experiment, we observe that
just one mode couples to the trap-excitation scheme. This
mode has a compressional, axial breathing character.
Experimentally, we observe that all the leading PCs
oscillate at the same frequency, suggesting that they
account for the same mode [37]. In this regime, both the
PC frequencies @; and R; remain rather constant. At the
supersolid phase transition, reached around a; = 50.6ay,
the numerical calculations reveal that different modes
undergo an abrupt change and can mix with each other.
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Their energy and phase or crystal character exhibits a
strong dependence on a,. Here, several modes respond to
the trap-excitation scheme, as shown by the value of R;.
In the PCA, we observe that the leading PCs now oscillate
at distinct frequencies and have different characters (see
also Fig. 3). One set of PCs reduces their frequency when
lowering a,, indicating (at least) one phase mode that
softens strongly in the supersolid regime, even below the
trap frequency vy. Another set of PCs shows a frequency
that remains hard when decreasing a,. Calculations of C
show that this mode changes character along the phase
diagram and eventually becomes crystal type.

In conclusion, the overall agreement between the experi-
ment and theory confirms the calculations in the supersolid
regime, revealing two distinct branches with respective
crystal and superfluid characters. The trademarks of super-
solidity expected in infinite systems thus carry over to
the finite-size ones currently available in laboratories. The
knowledge of the excitation spectrum will provide the base
for future investigations related to the superfluid properties
and phase rigidity in a supersolid state.
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