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Time-delayed dynamical systems materialize in situations where distant, pointwise, nonlinear nodes
exchange information that propagates at a finite speed. However, they are considered devoid of dispersive
effects, which are known to play a leading role in pattern formation and wave dynamics. We show how
dispersionmay appear naturally in delayed systems andwe exemplify our result by studying theoretically and
experimentally the influence of third order dispersion in a system composed of coupled opticalmicrocavities.
Dispersion-induced pulse satellites emerge asymmetrically and destabilize the mode-locking regime.
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Delayed dynamical systems describe a large number of
phenomena in nature and they exhibit a wealth of dynami-
cal regimes such as localized structures, fronts and chimera
states [1–8]. A fertile perspective lies in their interpretation
as spatially extended diffusive systems which holds in the
limit of long delays [9]. The presence of delayed terms is
connected with the finite propagation speed of signals;
hence delayed systems are widely used to model, e.g.,
networks, map lattices or optical systems; see Ref. [10] for
a review. A strong limitation of delayed dynamical systems
for modeling optical systems comes from the difficulty of
taking into consideration chromatic dispersion which
describes the dephasing of the spectral components of a
wave packet, thus making the delayed terms frequency
dependent. As such, description of wave propagation via
delayed models is limited to weakly dispersive media and/
or signals with narrow spectral bandwidth. Nevertheless,
chromatic dispersion plays a leading role in many phenom-
ena occurring during wave evolution. In particular, second
order dispersion in nonlinear extended media governs the
Benjamin-Feir (modulational) instability [11] and also
controls the appearance of cavity solitons in injected
Kerr fibers [12]. Third order dispersion is the lowest order
nontrivial parity symmetry breaking effect, which leads to
convective instabilities [13–15] and drifts [16–18]. Wave
propagation in dispersive media can be described by partial
differential equations both in conservative and dissipative
frameworks using, for instance, the nonlinear Schrödinger
or the complex Ginzburg-Landau equations. However,
the possibility of describing dispersive phenomena using
delayed dynamical systems is very attractive because it

would allow reducing the complexity of models based upon
partial differential equations, while still allowing for
extended bifurcation analysis. For example, the time-
delayed description of laser mode locking developed in
Ref. [19] allowed for the bifurcation analysis of pulsed
solutions but also to unveil their connections with all the
other possible solutions. This analysis is out of the reach of
pulse iterative models based upon partial differential
equations as in Ref. [20]. Recently, a complex procedure
involving integro-differential equations has been developed
for taking into account dispersion in time-delayed systems
[11,21]. However the description of dispersion as a simple,
robust, and unitary transformation in delayed systems
framework remained elusive so far.
In this Letter we show that second and third order

dispersion appear naturally when modeling a singularly
perturbed time-delayed system. The latter materialize in the
modeling of Vertical External-Cavity Surface-Emitting
Lasers (VECSELs) and we illustrate our general result
studying the effect of third order dispersion on the optical
pulses found in the output of a passively mode-locked
VECSEL. We show that third order dispersion leads to the
creation of satellites on one edge of the pulse which induces
a new form of pulse instability. Our results are in good
agreement with some experimental observations.
Consider a linear time-delayed system for a scalar

field yðtÞ,

M
dy
dt

¼ AyðtÞ þ Byðt − τÞ; ð1Þ
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with M, A, and B some real coefficients. Because of the
presence of a time delay, Eq. (1) corresponds to a
dynamical system with infinitely many degrees of freedom
and its eigenvalue spectrum fλm ¼ γm þ iωmg is a count-
ably infinite set. In the long delay limit τ ≫ 1, the spectrum
becomes quasicontinuous [22] and the separation between
the imaginary part of consecutive eigenvalues is a small,
almost constant quantity, which we define as ω0 ¼
2π=τ ≪ 1, i.e., Δωm ¼ ωmþ1 − ωm ≃ ω0. For small
values of m, the dissipative part γm of the spectrum shown
in Fig. 1(a) (red circles) features a clear parabolic shape,
thus evidencing the similarity between DDSs and spatially
extended diffusive systems [9].
This generic situation can be modified drastically by

extending Eq. (1) to a vectorial field y and for a particular
choice of the 2 × 2 matrices M, A, and B. Without loss of
generality we set M ¼ Mε ¼ diagð1; εÞ as well as A ¼
ð−1; h; 0;−1Þ and B ¼ ð0; 0; η;−ηÞ. The singular case
ε ¼ 0 is of particular interest as one of the two delay
differential equations becomes a delay algebraic equation.
If, in addition, one sets h ¼ 2 and η ¼ 1, one obtains a
purely imaginary eigenvalue spectrum fλm ¼ iωmg typical
of reversible systems, as shown in Fig. 1(a) (blue crosses)
(see the Supplemental Material [23] for the analytical form
of the eigenvalues). In this situation, where dissipation
is canceled, the deviations of Δωm with respect to a
perfectly regular comb with separation ω0—i.e., chromatic
dispersion—can influence the dynamics; the various waves
in an initial wave packet have time to get dephased since
they are not absorbed.
The normalized frequency separation Δωm=ω0 for the

two aforementioned cases is represented in Fig. 1(b). One
notices for m < 0 (m > 0) a monotonic decrease (increase)
ofΔωm. This corresponds to normal and anomalous second
order dispersion, respectively, while, around m ¼ 0, the
second order contribution vanishes, thus leaving third order
dispersion as the dominant effect [24]. In conclusion, the

two curves in Fig. 1(b) indicate that time-delayed systems
are in fact generically both diffusive and dispersive, but that
diffusion usually overwhelms dispersive effects.
These general considerations materialize when modeling

a VECSEL as depicted in Fig. 2. Our theoretical approach
follows the method developed in Refs. [25–28]. The
dynamical model for the intracavity fields Ej and popu-
lation inversions Nj reads

κ−11 _E1 ¼ ½ð1 − iα1ÞN1 − 1�E1 þ h1Y1; ð2Þ

κ−12 _E2 ¼ ½ð1 − iα2ÞN2 − 1þ iδ�E2 þ h2Y2; ð3Þ

_N1 ¼ γ1ðJ1 − N1Þ − jE1j2N1; ð4Þ

_N2 ¼ γ2ðJ2 − N2Þ − sjE2j2N2: ð5Þ
The indexes j ¼ 1, 2 denote a gain mirror and a semi-
conductor saturable absorber mirror (SESAM), respec-
tively. The photon lifetimes are κ−1j , the detuning
between the two cavities is δ, αj denote the linewidth
enhancement factors, and γ−1j are the population lifetimes.
The forward and reverse bias of the gain and the saturable
absorber are noted J1 and J2, respectively. The lasing
threshold is defined as Jth and emission occurs for J1 ≥ Jth.
The ratio of the gain and absorber saturation intensities is s.
The fields injected into the microcavities are Yj with a
coupling factor given by hj ¼ ð1þ jrl;jjÞð1 − jru;jjÞ=
ð1 − jru;jrl;jjÞ with ru;j and rl;j the upper and lower distri-
buted Bragg mirror reflectivities (in amplitude). The cavity
outputs consist in a superposition between the reflected
and emitted fields and read, after proper normalization,
Oj ¼ Ej − Yj. As such, considering the time of flight
between the two microcavities τ as well as the presence
of the beam sampler with transmission amplitude tbs, we
find that the mutual injection between the two cavities is
given by two delay algebraic equations

Y1ðtÞ ¼ O2ðt − τÞ ¼ tbs½E2ðt − τÞ − Y2ðt − τÞ�; ð6Þ
Y2ðtÞ ¼ O1ðt − τÞ ¼ tbs½E1ðt − τÞ − Y1ðt − τÞ�: ð7Þ

For a perfectly reflecting upper mirror with zero
transmission, we have jru;jj ¼ 1 and hj ¼ 0, while a
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FIG. 1. (a) Eigenvalue spectrum of Eq. (1) for A ¼ −1, B ¼
M ¼ 1 (red circles) and for A ¼ ð−1; 2; 0;−1Þ, B ¼ ð0; 0; 1;−1Þ
and M ¼ diagð1; 0Þ (blue crosses). We represent the real part of
the eigenvalues γm (normalized to the time delay τ) as well as the
imaginary part ωm normalized to the nominal separation ω0. In
the absence of chromatic dispersion, ωm=ω0 would be an integer.
(b) Normalized separation of the imaginary part of the eigenvalue
Δωm=ω0 as a function of the index m. Departure from unity
indicates chromatic dispersion. For both cases, τ ¼ 100.

FIG. 2. A schematic of the coupled cavities configuration. Ej
denote the intracavity fields, j ¼ 1, 2. The output and input fields
in the external cavity are represented by Oj and Yj, respectively.
The time of flight in the cavity is τ.
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symmetrical cavity for which jrl;jj ¼ jru;jj yields hj ¼ 1.
Interestingly, if rl;j → 1, we have hj → 2 and the cavity
operates in the Gires-Tournois interferometer regime [29].
The (linear) characteristics of a single microcavity can be

found setting N1 ¼ 0 in Eqs. (2), (7), and by replacing the
other cavity by a partially reflecting mirror with reflectivity
η. Here, one finds that the microcavity equations becomes
formally identical to the time-delayed system for the vector
field discussed in Eq. (1) setting y ¼ ðE1; Y1ÞT . In parti-
cular, the situation with hj ¼ 2 is of particular rele-
vance since the bottom mirror of the microcavities is
usually highly reflective and contains more stacked half-
wavelength layers in order to minimize losses and increase
emission directionality. Similar considerations apply also to
the mode-locked integrated external-cavity surface emitting
laser (MIXSEL) where both gain and absorber are located
within the same microcavity.
The cavity response in reflection, as given by the relation

Oj ¼ Ej − Yj, consists in the photons that are immediately
reflected from the top mirror with a π phase shift, i.e., the
−Yj term, and those that enter the cavity and remain
trapped for an average duration that corresponds to the
photon lifetime. Notice that the boundary conditions are
dictating the delay algebraic equation structure of Eqs. (6),
(7). The limit ε → 0 of the matrix Mε, while helpful to
understand the transition from diffusive (differential)
toward dispersive (algebraic) delay equations in Eq. (2),
is not an idealization and corresponds to a physical
situation.
We apply the functional mapping method developed in

Ref. [27] to link the field profiles in the external cavity
ðEðnÞ

1 ; YðnÞ
1 Þ at the nth round-trip to those of the previous

one. We find

ẼðnÞ
1 ¼ h1Ỹ

ðnÞ
1

1 − iω
; ỸðnÞ

1 ¼ ηðẼðn−1Þ
1 − Ỹðn−1Þ

1 Þ ð8Þ

with X̃ðωÞ the Fourier transform of XðtÞ, η ¼ −t2bs and
κ1 ¼ 1 by a proper time normalization. Upon using that
h1 ¼ 2, we find the following reflection coefficient

ỸðnÞ
1 ¼ ηriðωÞỸðn−1Þ

1 ; riðωÞ ¼ exp ½2iθðωÞ�; ð9Þ

where we defined the complex reflectivity of the interfe-
rometer as riðωÞ and θðωÞ ¼ arctanω. Besides the beam
splitter attenuation factor η, one notices that the cavity
response is unitary in Fourier space, since jrij ¼ 1, mean-
ing that all the photons are conserved irrespective of their
wavelength. They are either directly reflected, or trans-
mitted, stored, and reflected again. The filter is essentially
dispersive and induces a phase shift that depends non-
linearly on the frequency.
The response of this linear system based upon delay

algebraic equations is illustrated in Fig. 3 for the case of an
incoming Gaussian pulse with varying full width at half

maximum (FWHM). One notices, after each round-trip, the
appearance of a new satellite over the leading edge of the
pulse. As shown in Fig. 3, third order dispersion is a parity
breaking effect that affects the pulse leading and falling
edges differently. The interpretation of the emergence of
satellites is direct, considering the expression of the cavity
output O. One part of the response is immediate, while the
other is delayed by the cavity band-pass filtering effect. The
satellites are more visible for pulses whose width is close to
(or smaller than) the cavity photon lifetime.
Transforming back Eq. (9) into the time domain

allows obtaining the field profile evolution from one
round-trip towards the next. We define ξ as a slow timescale
for the pulse evolution after each round-trip, such that
∂ξỸ ¼ ln ½ηriðωÞ�Ỹ. Upon expanding ln riðωÞ up to third
order as ln riðωÞ ¼ 2i arctanðωÞ ¼ 2iω − 2i=3ω3 and
reverting back to the time domain using that −iω → ∂t,
we find that Yðξ; tÞ evolves according to

∂Y
∂ξ ¼

�
ln η − 2

∂
∂t −

2

3

∂3

∂t3
�
Y; ð10Þ

which allows us to identify the value of the third order
dispersion and to emphasize the absence of second order
diffusive and dispersive contributions. Gires-Tournois
interferometers are usually used to induce a controllable
amount of second order dispersion by operating them away
from the cavity resonance, i.e., ω ¼ 0. Expanding riðωÞ
around a carrier frequency ω0 and reverting to time domain
for the slow amplitude setting −iðω − ω0Þ → ∂t yields a
second order dispersion contribution þiD∂2

t Y in Eq. (10)
with coefficient D ¼ 2ω0=ð1þ ω2

0Þ2.
In the presence of nonlinearity, writing a simple partial

differential equation such as Eq. (10) may or may not be
possible since nonlinearity and filtering are a priori non-
separable effects. However, because lasing occurs close to
the cavity resonance ω ¼ 0, the lasing regime is essentially
influenced by third order dispersion. Notwithstanding its
limited applicability, Eq. (10) remains a useful qualitative
tool to understand the dispersive response of Eqs. (2)–(7).
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FIG. 3. Cavity response for two Gaussian pulses of FWHM
τp ¼ 1 (blue line) and τp ¼ 5 (red dotted line) after a variable
number of round-trips Nrt. At each round-trip, the total response
consists of the superposition between the reflected and the filtered
pulse inducing a train of satellites. The maximal intensity is
normalized to unity for clarity.
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Further, the coefficients of Eq. (10) can be directly mapped
to the eigenvalues of the underlying Eq. (1), making the
connection between partial differential equations with third
order dispersion and delay algebraic equations feasible (see
Supplemental Material [23]).
In the passive mode-locking regimes where short optical

pulses are generated by the interplay between the nonlinear
dynamics of gain and saturable absorption in the two
cavities, the satellites on the leading edge do not experience
net gain as their intensities are usually insufficient to bleach
the saturable absorber. Hence, third order dispersion only
perturbs the central pulse structure. Yet, in some situations,
in particular for high bias current when the background
zero intensity solution becomes weakly stable, one of the
satellites, generally the one of highest intensity closest to
the main pulse, can become linearly unstable and grow into
a fully developed pulse. In this case, the newborn pulse will
deprive the original pulse of gain, due to the finite recovery
time of the carriers. This behavior can be interpreted as an
asymmetrical soliton explosion [30–34]. Such a situation
leads to the dynamics depicted in Fig. 4. The individual
pulse dynamics are most readily observed using a so-called
space-time diagram as in Fig. 4(a), where one can see the
details of the pulse evolution over many round-trips. Here
the growth of the satellites in front of the pulse, and the

subsequent death of the original pulse is most visible and
leads to an apparent motion of the pulse to the left. This
ultrafast dynamics can be partially blurred by a photo-
detector having a limited bandwidth, but it remains visible;
see Fig. 4(b). The optical spectrum is depicted in Fig. 4(c)
where one can observe the evolving asymmetrical tail of the
bluest side. A slightly different parameter set leads to
deformed satellite explosions that resemble to an oscillation
of the pulse position, see in Fig. 4(d). This oscillation
remains visible even blurred by a photodetector as shown in
Fig. 4(e). Oscillation of the optical spectrum can also be
observed, cf., Fig. 4(f). In all cases, one notes the very long
timescale of this dynamics that corresponds to the slow
evolution of the satellite from one round-trip towards the
next under the influence of nonlinearity, drift, and third
order dispersion.
We have tested these theoretical predictions in a mode-

locked VECSEL composed by a gain mirror and a SESAM
placed at a distance of 15 cm leading to a cavity round-trip
of 2τ ≈ 1 ns. The experimental setup is described in the
Supplemental Material [23] and it is similar to that of
Ref. [28], while [35,36] used different imaging conditions.
The gain mirror and SESAM are based on a GaAs substrate
with a high reflectivity (R ≃ 99.9%) bottom Bragg reflec-
tor: the first features 6 InGaAs/GaAsP quantum wells
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FIG. 4. Satellite instability regime found by direct numerical simulations of Eqs. (2), (7) for a single pulse. (a) Space-time
diagram of the intensity. (b) Low-pass filtered @10 GHz detection. (c) Single round-trip optical spectrum. For sufficiently large
gain the largest satellite is amplified, eventually replacing its parent pulse. Bias and parameters are J1 ¼ 1.087Jth,
ðκ−11 ; κ−12 ; γ−11 ; γ−12 ; τÞ ¼ ð343 fs;34.3 fs;2.45 ns;34 ps; 4.12 nsÞ, ðJ1;J2;α1;α2;h1;h2Þ¼ð0.044;−0.03;2.5;1;2;1.9985Þ, as well as
ðtbs; s; δÞ ¼ ð0.985; 5.4;−0.5Þ. (d),(e),(f) Deformed satellite instability for slightly different parameters ðJ1; α1; sÞ ¼ ð0.041;
2.3; 5.3Þ. Here, J1 ¼ 1.014Jth. In both cases Jth ≃ 0.0404.
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emitting at 1.06 μm [37,38], the second has a single
InGaAs/GaAs quantum well [39]. The residual microcavity
effects of the two devices have been controlled by adding
few Bragg’s pair on the top of the substrates. Accordingly,
their finesse can be engineered for optimizing the level of
maximum gain G and of saturable losses A at, respectively,
the gain mirror and SESAM microcavities resonances
(λG, λB). In the experiment described here, the micro-
cavities bandwidths (FWHM) are ΔλG ¼ 3.5 nm for the
gain mirror and ΔλB ¼ 40 nm for the SESAM and A ≈
12% at λB. Because ΔλG ≪ ΔλB, the wavelength of the
intracavity field is close to λG and the amount of saturable
losses A depends ultimately on the detuning δλ ¼ λB − λG.
Accordingly, A can be varied by acting on the temperatures
of the two devices. In the achievable range of A
(5% < A < 8%), the VECSEL operates in the regime of
passive mode locking. When the pumping level J reaches
the threshold value Jth, periodic pulses at a period of 2τ are
emitted. For increasing J, fundamental mode locking gives
way to harmonic mode locking with an increasing number
of regularly spaced pulses per round-trip. For A ≈ 5%, the
pulse instability predicted theoretically is observed in
several ranges of values of J. In Fig. 5 we provide
experimental evidence of this instability in the situation
where two pulses are present in the same round-trip. We
plot their evolution as a function of the number of cavity
round-trips together with the time-average optical spec-
trum. The satellite instability affects each pulse in
antiphase, leading to their explosion as described in
Figs. 4(d), 4(e), 4(f). We believe that the instability
described in Ref. [40] has the same origin.
In conclusion, we discussed in this Letter how second

and third order dispersion can be implemented in delayed
dynamical systems using delay algebraic equations and
how this particular dynamical system appears naturally as a
boundary condition on a partially reflecting microcavity.
The functional mapping method previously developed
allowed us to find, in the linear regime, the equivalent
partial differential equation for the field evolution which
allows linking the eigenvalue spectrum with the coefficient
of the third order dispersion. We exemplified the influence
of third order dispersion on the dynamics of pulses found in

a mode-locked semiconductor laser and we have found that
satellites may grow into a fully developed mode-locked
pulse that eventually replaces the original pulse. Our
experimental results are in good agreement with theory.
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