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We experimentally realize a photonic analogue of the anomalous quantum Hall insulator using a two-
dimensional (2D) array of coupled ring resonators. Similar to the Haldane model, our 2D array is
translation invariant, has a zero net gauge flux threading the lattice, and exploits next-nearest neighbor
couplings to achieve a topologically nontrivial band gap. Using direct imaging and on-chip transmission
measurements, we show that the band gap hosts topologically robust edge states. We demonstrate a
topological phase transition to a conventional insulator by frequency detuning the ring resonators and
thereby breaking the inversion symmetry of the lattice. Furthermore, the clockwise or the counterclockwise

circulation of photons in the ring resonators constitutes a pseudospin degree of freedom. The two
pseudospins acquire opposite hopping phases, and their respective edge states propagate in opposite
directions. These results are promising for the development of robust reconfigurable integrated nano-
photonic devices for applications in classical and quantum information processing.
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Photonics has emerged as a versatile platform to explore
model systems with nontrivial band topology, a phenome-
non originally associated with condensed matter systems
[1-3]. Photonic systems have realized analogues of the
integer quantum Hall effect [4-8], Floquet topological
insulators [9-12], quantum spin-Hall and valley-Hall
phases [13-18], and topological crystalline insulators
[19,20]. Topological protection has enabled the realization
of photonic devices that are robust against disorder, such as
optical delay lines [7,8], lasers [21-23], and quantum light
sources [24]. Moreover, features unique to bosonic sys-
tems, such as the possibility of introducing gain and loss
[25-29], parametric driving, and squeezing of light
[24,30,31], provide opportunities to explore topological
phases that do not occur in fermionic systems.

Despite these advances, there has not yet been a nano-
photonic realization of the anomalous quantum Hall
phase—a two-dimensional Chern insulator with zero net
gauge flux [32,33]. This is noteworthy since the various
topological phases differ significantly in the realization of
nontrivial band topology, offer different forms of topologi-
cal protection, and are suited for different platforms. For
instance, photonic spin-Hall phases based on degenerate
orthogonal field polarizations have been realized at micro-
wave frequencies [14,34], but have proven to be challeng-
ing to implement at optical frequencies using nanophotonic
components. Photonic valley-Hall and topological
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crystalline phases, which rely on lattice symmetries, are
easily realized at most frequencies including the optical
regime [15,17,18,20,35], but their topological edge states
manifest on internal boundaries instead of external edges
[15,18-20,35] and are protected only against certain
boundary deformations (e.g., 120° bends but not 90° bends)
[15,19]. Quantum Hall and anomalous quantum Hall
phases do not require any special symmetries and are
therefore significantly more robust that other topological
phases: topological edge states can appear along external
edges and are protected irrespective of the lattice shape.
The quantum Hall phase, which requires nonzero net
gauge flux, has been realized in nanophotonics [6-8],
but not the anomalous quantum Hall phase, which occurs
in periodic lattices with zero net flux. Anomalous Hall
lattices are highly advantageous for nanophotonic device
applications, because their translational invariance allows
for simpler structure designs and topological-to-trivial
phase transitions can be easily induced by tuning on-site
potentials [32].

In this work, we demonstrate a nanophotonic analogue
of the anomalous quantum Hall system using a periodic 2D
checkerboard lattice of coupled ring resonators specifically
tailored to have strong next-nearest neighbor couplings
[36]. The structure is implemented on a silicon-on-insulator
platform and operates at telecom frequencies [7,8,37], with
ring diameters and lattice periodicity on the order of
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FIG. 1.

(a) Schematic of the 2D array of ring resonators, with site rings A and B (blue and red, respectively) coupled using link rings

(gray). The input and the output waveguides are shown in black. Top-left inset: Microscope image of the device. Top-right inset: The
ring resonators support two pseudospins, up and down, which can be selectively excited and measured, and their corresponding edge
states travel in opposite directions (pink and brown arrows, respectively). Bottom inset: Schematics for nearest-neighbor (left) and next-
nearest-neighbor hoppings (center and right) for the pseudospin-up. (b) The effective 2D lattice. Solid (dashed) lines denote nearest
(next-nearest)-neighbor hoppings, with hopping phases indicated. The gauge flux is =z in a single plaquette, and zero over a unit cell of
2 plaquettes (shaded yellow). (c)—(d) Band diagram of a cylindrical lattice, for M = 0 and M = 3J, respectively. Here kA is the phase
between neighboring unit cells along the radial (periodic) direction. For M < 2J, the lattice is topological and exhibits edge states. The

lattice is topologically trivial when M > 2J.

20 — 50 ym. As proposed in Ref. [38], the tight-binding
description of the photonic lattice is similar to the Haldane
model [32], in that the net gauge flux threading the lattice is
zero, but next-nearest neighbor couplings induce nonzero
local gauge flux. This effectively breaks time reversal
symmetry and creates a topologically nontrivial band
gap. We directly image the light intensity distribution in
the lattice, revealing topological edge states in the gap that
are robust against missing-site defects and can propagate
around 90° corners without scattering into the bulk. As the
overall structure is time-reversal invariant, it hosts a
pseudospin degree of freedom associated with the clock-
wise and the counterclockwise (time-reversed) propagation
of photons in the rings. By selective excitation of the
pseudospins, we show that time-reversal invariance is
effectively broken within each decoupled pseudospin
sector, and the edge states associated with the two pseu-
dospins propagate in opposite directions. Furthermore, we
demonstrate a transition between topologically nontrivial
and trivial phases by detuning the ring resonance frequen-
cies, and observe edge states at an internal boundary
between the two phases. Notably, the system is periodic
and does not require staggering the phases of the couplings,
unlike the coupled-resonator system of Refs. [6,7,23],
which realizes the integer quantum Hall effect. These
features are highly promising for topological nanophotonic
devices that can be dynamically reconfigured via optical,
electrical, or thermal pumping [38,39].

Our system, shown in Fig. 1(a), consists of two inter-
posed square lattices of ring resonators, with respective
sites labeled A and B [38]. These site-ring resonators are
coupled to their neighbors and also next-nearest neighbors
using another set of rings, the link rings. The resonance

frequencies of the link rings are detuned from those of the
site rings by one-half free-spectral range by introducing an
extra path length such that the round-trip phase at site-ring
frequencies is z [6,7]. The link rings thus introduce a
direction-dependent hopping phase +7/4 from each lattice
site to their nearest neighbors, while the hopping phase for
next-nearest neighbors is zero [Fig. 1(a)]. As a result, the
local effective magnetic flux (gauge flux) threading a
plaquette of two A and two B site rings is 7z, whereas
the net flux threading a unit cell of two plaquettes is zero
[Fig. 1(b)]. This staggered flux arrangement, originally
conceived by Haldane, effectively breaks time-reversal
symmetry and gives rise to an anomalous quantum Hall
phase without Landau levels [32].

The photonic lattice is time-reversal invariant, and
supports a pseudospin (up or down) degree of freedom
associated with the circulation direction (clockwise or
counterclockwise) of photons in the site-ring resonators
[Fig. 1(a)]. The two pseudospins are time-reversed partners,
and thus have identical coupling constants and resonance
frequencies. However, they acquire opposite hopping
phases between nearest neighbors, such that each pseudo-
spin effectively experiences broken time-reversal symmetry
and realizes a copy of the anomalous Hall phase [33] with
the tight-binding Hamiltonian [38]

H=Y (wy—M)a] ,a;,+(wo+M)b] b,
[ X

— Z J(a;,o'al',o'_F b;’gbw +Cl;0_biﬁe—ia¢i‘j +H.c.). (1)
(ij)o

Here, a; ,, b; , are the annihilation operators corresponding
to site rings A and B, respectively, at lattice site index
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(a) Measured transmission (7) spectrum for the topologically nontrivial lattice (M = 0) with the pseudospin-up excitation. The

green shaded region indicates the frequency band over which topological edge states are observed in direct imaging and the dashed lines
indicate the expected edge-band region for a pure device. (b) The corresponding spatial intensity distribution obtained through direct
imaging at ov = 0 (integrated over a frequency range of 5 GHz). Edge states circulate CCW around the lattice. (c) Intensity distribution at
ov = =20 GHz, showing scattering into the bulk. (d)—(f) The corresponding results for the pseudospin-down excitation. The edge states
now circulate CW around the lattice. All spatial intensity distributions show only site ring resonators. The arrows indicate input and

output ports for transmission measurements.

i = (x,y) and the summation (i, j) is only over the nearest
and next-nearest neighbors indicated in Fig. 1(b). 6 = *1is
the pseudospin index for the up or down spins, respectively.
J is the coupling strength between the nearest and the
next-nearest neighbor sites and ¢ = z/4 is the direction-
dependent hopping phase between sites A and B, as shown
in Fig. 1(a). We include a frequency detuning M between the
A and B site rings. When M < 2J, the lattice band structure
hosts a topological band gap, occupied by unidirectional,
topologically robust edge states [Fig. 1(c)] and their number
constitutes a topological invariant [37,40]. When M > 2J,
the lattice is topologically trivial and the edge states are
absent [Fig. 1(d)]. Because of the spin-dependent hopping
phase, the edge states corresponding to the two pseudospins
propagate around the lattice in opposite directions, similar to
the quantum spin-Hall effect [33]. Although the pseudospins
do not follow Kramers degeneracy theorem and the edge
states are therefore not robust against interspin coupling
disorder, the mixing between pseudospins is negligible in
the present system [7,8].

We implemented the design using silicon ring resonators
with waveguides 510 nm wide, 220 nm high, and resonator
length ~70 ym. The gap between resonators is 180 nm,
with coupling strength J estimated at 15.6(4) GHz (see
Supplemental Material [41]). To probe the lattice, we
couple a tunable continuous-wave laser at the input port
and measure the power transmission at the output port
[Fig. 1(b)]. By choosing the input and the output ports, we
can selectively excite and measure a given pseudospin. A
microscope objective is also used to directly image the
spatial light intensity distribution [7].

To observe topological edge states, we fabricated an
array of 56 A resonators and 56 B resonators, as shown
schematically in Fig. 1(a). For this device we choose
M =0, that is, the A and B resonators are identical,
corresponding to the nontrivial topological phase.
Figure 2(a) shows the measured transmission spectrum
at the lattice output for the pseudospin-up excitation. We
observe high transmission near the frequency detuning
ov =~ 0. Figure 2(b) shows the measured spatial intensity
profile at ov =~ 0, integrated over a frequency range of
5 GHz. The light is confined to the lattice edge and
propagates around the lattice in a counterclockwise direc-
tion. Furthermore, the light travels around two sharp 90°
bends without scattering into the bulk of the lattice. This
shows that this high-transmission region around év = 0 is
indeed the topological edge band. The decrease in light
intensity as it propagates along the edge is mainly due to
scattering losses in the resonator waveguides. By contrast,
when we excite the lattice outside this band, e.g., at
ov ~ —20 GHz, the spatial intensity distribution occupies
the bulk of the lattice, as shown in Fig. 2(c). Moreover, the
spatial intensity profile in the bulk band is sensitive to even
small changes in the excitation frequency whereas the
intensity profile in the edge band is relatively constant
throughout the edge band. Note that the circulation direc-
tion (CCW) around the lattice is opposite to the circulation
direction (CW) in the site ring resonators.

This observation of topological edge states is also a
demonstration of their robustness against fabrication-
induced disorder. Although the fabrication was performed
at a state-of-the-art commercial foundry (IMEC, Belgium),
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(a) Measured transmission (7') and reflection (R) spectrum of a topologically trivial device, with M ~ 98 GHz > 2J and

pseudospin-up excitation. The transmission is negligible within the band gap (év ~0) due to the absence of edge states. The
transmission peak (and reflection dip) at v = +M coincides with the resonance frequency of the B rings. At v = —M, the lattice
absorbs some light from the input but the light does not reach the output because of the large frequency mismatch between the A and B
rings. (b),(c) Spatial intensity profiles for év = +M and év = —M, showing excitation of only the B and A rings, respectively.
(d) Measured transmission spectrum for the pseudospin-down excitation. Unlike the topological case, the transmission is the same
irrespective of the spin. (e),(f) Spatial intensity distributions also remain almost identical, confirming the topologically trivial nature of

the lattice.

there is significant disorder in the ring resonance frequen-
cies, which we measured to be around 33 GHz, comparable
to the band gap width of 2J =32 GHz. Nevertheless,
disorder decreases the width of the topological band gap
and hence increases the transverse localization length of the
edge states (see Supplemental Material [41]).

Next, we probe the spin-polarized nature of the topo-
logical edge states by exciting the lattice with the pseudo-
spin-down. Figure 2(d) shows the resulting transmission
spectrum. The measured spatial intensity profile at év ~ 0
reveals an edge state that now propagates around the lattice
in a clockwise direction [Fig. 2(e)]. Again, the edge state
intensity is confined to the physical edge of the lattice. The
transmission at év =~ 0 is approximately 5 dB lower than in
the pseudospin-up case, because the edge state for the
pseudospin-down travels a much longer path between the
input and output couplers. At frequencies outside the band
gap, we again see scattering into the bulk [Fig. 2(f)].
Because of the disorder, the edge-band regions of the two
pseudospins are slightly shifted in frequency.

To demonstrate the existence of a topological phase
transition, we fabricated another device with sublattice
detuning M =~ 98 GHz, significantly larger than the tran-
sition threshold of 2/ ~ 31 GHz. This detuning is achieved
by increasing (decreasing) the length of the A (B) ring
resonators by 30 nm, which red (blue) shifts their resonance
frequencies. Figure 3(a) shows the measured transmission
spectrum at the output, for the pseudospin-up input. We
observe almost negligible transmission at v = 0, indicating
the absence of any transmitting channels in the band gap.

There is a single transmission band at 6v ~ M ~ 100 GHz.
The measured spatial intensity distribution at ov =
100 GHz [Fig. 3(c)] reveals only a few B rings (which
are resonant with the input frequency) are excited near the
input port. In this regime, the A and B rings are very weakly
coupled due to the large resonance frequency mismatch. The
transmission is negligible at v = —100 GHz (the resonance
frequency of the A rings) because the input and output ports
are coupled to B rings. A small amount of absorption by the
A rings is visible in the reflection spectra shown in Fig. 3(a),
and in the spatial intensity profile of Fig. 3(b). More
importantly, we find that flipping the spin of excitation
does not affect the transmission spectrum or the spatial
intensity profile, as shown in Figs. 3(d)-3(f); this confirms
the lattice is topologically trivial.

To verify that the edge states are not artifacts of the
physical lattice boundary, we fabricated a device with an
interface between a topological lattice (M = 0) and a trivial
lattice (M =~ 98 GHz), shown in Fig. 4(a). We place an
input port on one edge of the topologically nontrivial
domain and monitor two output ports on the edges of the
nontrivial and trivial domains. The measured transmission
spectra at the two output ports, with the pseudospin-down
excitation, are shown in Fig. 4(b). At frequencies within
the band gap of the nontrivial domain [highlighted in
Fig. 4(b)], we observe edge states propagating clockwise
around the nontrivial domain [Fig. 4(c)]. These edge states
then follow the “internal” domain boundary, and do not
enter the topologically trivial domain; accordingly, negli-
gible transmission is observed at the output port in the
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FIG. 4. (a) Schematic of device with an interface between
topological (M = 0) and trivial (M > 2J) domains. The topo-
logical domain also hosts a defect in the form of a missing site-
ring resonator. (b) Measured transmission (7) spectrum from
input to the two output ports, for the pseudospin-down excitation.
The light follows the interface, leading to negligible output at the
trivial domain coupler. (c) Measured spatial intensity profile. The
inset shows a 2D plot of the intensity distribution along the left
edge with the defect.

trivial domain. As a further test of robustness, we delib-
erately removed one site-ring resonator from the edge of the
topologically nontrivial domain, as indicated in Figs. 4(a)
and 4(c). The edge state routes around the defect, without
scattering into the bulk. We emphasize that this topological
protection is superior to recently demonstrated crystalline
symmetry-protected and valley-Hall topological edge
states, which are sensitive to symmetry-breaking disorder
[17,18,20,42,43].

To summarize, we demonstrated topologically robust
edge states in a nanophotonic analogue of the anomalous
quantum Hall effect, using a periodic 2D lattice of ring
resonators with zero net gauge flux. We showed a topo-
logical-to-trivial phase transition, induced by relatively
small detunings of the ring resonance frequencies. In the
future, this phase transition can be utilized for robust
routing and switching of light in integrated photonic
devices [38]. Specifically, the silicon photonics platform
can easily include active components, such as metal heaters
[37] or electro-optic modulators [44] to dynamically
tune the ring resonances. Moreover, the large Kerr non-
linearity of silicon could be leveraged for robust, optically

reconfigurable light routing, and to explore the behavior of
topological states in a nonlinear regime. Our design can
also be implemented using other material platforms, such
as silicon nitride, aluminum nitride, etc., to work near the
visible wavelength region.
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