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I consider the γW-box correction to superallowed nuclear β decays in the framework of dispersion
relations. I address a novel effect of a distortion of the emitted electron energy spectrum by nuclear
polarizabilities and show that this effect, while neglected in the literature, is sizable. The respective
correction to the βþ spectrum is estimated to be ΔRðEÞ ¼ ð1.6� 1.6Þ × 10−4E=MeV assuming a
conservative 100% uncertainty. The effect is positive definite and can be observed if a high-precision
measurement of the positron spectrum is viable. If only the full rate is observed, it should be included in the
calculated F t values of nuclear decays. I argue that this novel effect should be included in the analyses of
nuclear beta decay experiments to ensure the correct extraction of Vud from decay rates, and of the Fierz
interference term from precision measurements of decay spectra.
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The observation of β decay has furnished the evidence
for many fundamental ingredients of the standard model
(SM). Universality of the weak interaction and conserva-
tion of the vector current (CVC) led to the introduction of
the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix, which has to obey the constraint of unitarity.
Unitarity of its first row, jVudj2 þ jVusj2 þ jVubj2 ¼
0.9994ð5Þ [1] is one of the most stringent constraints on
the parameters of SM and its extensions [2].
The top left corner element jVudj ¼ 0.974 20ð21Þ [1]

dominates both the value and the uncertainty of the
unitarity constraint, and it is obtained almost exclusively
from the global analysis of a number of superallowed
0þ − 0þ β decays [3,4]. One of the cornerstones of this
analysis is an adequate calculation of one-loop radiative
corrections which have been studied for more than six
decades, and the formalism has been worked out, e.g., in
Refs. [5,6].
The very accurate extraction of Vud from superallowed

nuclear decays is empowered by the following formula,

jVudj2 ¼ 2984.43s=½F tð1þ ΔV
RÞ�: ð1Þ

The radiative correction ΔV
R is evaluated on a free neutron

[6] and is conventionally singled out also for nuclear
decays. The universal and very precise value F t ¼
3072.07ð63Þ s is an average of 14 reduced half-lives [3,4],

F t ¼ ftð1þ δ0RÞð1þ δNS − δCÞ; ð2Þ

which are obtained from the measured half-lives t and
calculated statistical factors f, and which should be
independent of the particular decay as a consequence of
CVC. The “outer” correction δ0R depends on the emitted

electron energy and the charge of the daughter nucleus.
I refer the reader to Ref. [7] for a recent review of energy-
dependent corrections. The nuclear structure dependence
resides in the energy-independent “inner” corrections δC
and δNS: the former stems from isospin-breaking correc-
tions to the tree-level matrix element of the Fermi operator,
and the latter from nuclear effects in the γW box, defined
with respect to the free-neutron γW box entering ΔV

R .
The γW box plays a central role in the uncertainty of Vud.

Recently, it was reexamined in the dispersion relation
framework [8,9]. Reference [8] addressed hadronic con-
tributions to the universal correction ΔV

R and found a
substantial shift in the extracted value of Vud with a
reduced hadronic uncertainty, jVudj ¼ 0.973 70ð14Þ, rais-
ing tension with unitarity, jVudj2 þ jVusj2 þ jVubj2 ¼
0.9984ð4Þ. Consequently, Ref. [9] investigated the robust-
ness of the procedure of splitting the γW box on a nucleus
into the universal, free-neutron ΔV

R and the nucleus-specific
δNS. In particular, the “quenching” of the free-nucleon
elastic box contribution was addressed, and a dispersive
evaluation suggested that the effect previously calculated in
Ref. [10] and included in all subsequent analyses of the
superallowed nuclear decays was underestimated. A proper
account of the quasielastic contribution led to a reduction
in the reduced half-life, F t ¼ 3072.07ð63Þ s → F tnew ¼
3070.5ð1.2Þ s, bringing Vud closer to its old value,
jVudj ¼ 0.973 95ð21Þ, and improving the agreement with
unitarity somewhat, jVudj2 þ jVusj2 þ jVubj2 ¼ 0.9989ð5Þ.
This Letter is dedicated to a critical assessment of yet

another ingredient of Eqs. (1) and (2), the splitting of the
full radiative correction into inner and outer. The logics
behind this splitting uses the fact that, while the energy
released in superallowed decays is a fewMeV, the scale that
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governs the strong interaction is the pion mass Mπ≈
140 MeV. Then, energy-dependent effects due to strong
interaction will show up only at ðα=πÞðE=MπÞ ∼ 10−5

(with α ≈ 1=137 being the fine structure constant and E
the energy of the lepton), negligible at the present level of
precision.
All references that have dealt with nuclear structure

contributions to the γW box in the past have assumed the
correctness of this argument. However, the presence of
the nuclear excitation spectrum that is separated from the
ground state by only a few MeV provides a more natural
energy scale Λnucl, generically expected to lie between the
two extremes, Q < Λnucl < Mπ . It is then possible that
energy- and nuclear structure-dependent corrections scale
as ðα=πÞðE=ΛnuclÞ ∼ 10−3 − 10−5, depending on the exact
value of that scale. If it is small enough, the conventional
splitting of the γW box into inner and outer contributions is
not warranted (the inner correction leaks into the outer
one), and along with the pure QED outer correction δ0R, a
new energy-dependent nuclear structure correction δNSE has
to be included in the universal F t value. I investigate this
scenario below.
I consider a forward scattering process fν=ν̄gðkÞ þ

AðpÞ → e∓ðkÞ þ A0ðpÞ in the limit of zero momentum
transfer (no nuclear recoil) but finite lepton and neutrino
energies. At this stage, the masses of the initial and final
nuclear states A, A0 are taken to be equal, M, and electron
and neutrino masses are neglected. This is an adequate
approximation for the purposes of this study. The γW-box
amplitude in Fig. 1 is defined as

TγW ¼ αGFVudffiffiffi
2

p
Z

d4q
π2

ūeγνð=k − =qÞγμð1 − γ5Þuν
q2ðk − qÞ2ð−1þ q2=M2

WÞ
Wμν

γW;

ð3Þ

with q being the 4-momentum of the γ andW� boson. The
spin-independent Compton tensor takes the form

Wμν
γW ¼ −gμνηT1 þ

pμpν

ðpqÞ ηT2 þ
iϵμναβpαqβ
2ðpqÞ T3; ð4Þ

with the phases η ¼ �1 for the β� processes, respectively.
The forward amplitudes are functions of the photon energy
ν ¼ ½ðpqÞ=M� and photon virtualityQ2, and they are related
to the inclusive structure functions via ImTi ¼ Fi, defined

via the commutator of the hadronic electromagnetic and
charged weak currents Jνem and J�;μ

W , respectively,

i
4π

Z
dxeiqxhA0j½JνemðxÞ; J�;μ

W ð0Þ�jAi

¼ −gμνF1 þ
pμpν

ðpqÞ F2 þ
iϵμναβpαqβ
2ðpqÞ T3: ð5Þ

I define the □γW correction per active nucleon as

TW þ TγW ¼ −N
ffiffiffi
2

p
GFVud½1þ□γW �ūe=pð1 − γ5Þuν; ð6Þ

with N being the number of active nucleons.
The imaginary part of the box diagram is easily obtained

using the definitions in Eqs. (3)–(6),

Im□γWðEÞ ¼
α

N

Z
Em
1

0

dE1

E

Z
Q2

m

0

dQ2

�
F3

2Mν

�
1 −

ν

2E

�

þ ηF1

2ME
þ
�
E − ν

νQ2
−

1

4Eν

�
ηF2

�
: ð7Þ

Energy variables appearing above are defined in terms of the
invariants s ¼ ðpþ kÞ2,W2 ¼ ðpþ qÞ2 asE ¼ ½ðs −M2Þ=
2M�, E1 ¼ ½ðs −W2Þ=2M�, ν ¼ ½ðW2 −M2 þQ2Þ=2M�.
The upper limits are Em

1 ¼ E − ϵ, with ϵ being the threshold
for the photobreakup of the target nucleus, and Q2

m ¼
ðs −W2Þðs −M2Þ=s. The real part of the box correction
is obtained from the forward dispersion relation of the form

Re□γWðEÞ ¼
1

π

Z
∞

ϵ

�
dE0

E0 − E
� dE0

E0 þ E

�
Im□γWðE0Þ; ð8Þ

with the first and second terms in the square bracket
originating from the discontinuity of the direct and crossed
graphs, respectively. The sign between the two depends on
the isospin structure of the Compton amplitudes.
Electromagnetic interaction does not conserve isospin,

and Ti contains two isospin components, Tð0Þ
i τaþ

Tð−Þ
i

1
2
½τ3; τa�, which behave differently under crossing,

Tð0;−Þ
i ð−ν; Q2Þ ¼ ξð0;−Þi Tð0;−Þ

i ðν; Q2Þ; ð9Þ

with ξð0Þi ¼ 1 forT1 and ξ
ð0Þ
i ¼ −1 forT2;3, and ξ

ð−Þ
i ¼ −ξð0Þi .

As a result, the γW box will contain both even and odd
powers of energy. I account for the leading E dependence:
constant in the E-even and linear in the E-odd pieces,
respectively. The hadronic structure-dependent part of the
E-even piece that is due to the weak vector current (con-

tribution of Fð−Þ
1;2 ) cancels against other one-loop corrections

[5] and is omitted. To reflect this subtraction, I use notation
□

even
γW . Changing the order of integration and assuming that

the energy released in the β decay process is smaller than

FIG. 1. The direct and crossed γW-box diagrams for a nuclear
β− (βþ) decay of the parent A into the daughter nucleus A0 with
the emission of an electron (positron).
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nuclear excitations, I obtain the dispersion representation for
the leading E behavior of the γW box:

Re□even
γW ¼ α

πN

Z
∞

0

dQ2

Z
∞

νthr

dν
Fð0Þ
3

Mν

�
1

Emin
−

ν

4E2
min

�
;

Re□odd
γW ¼ αE

3πNM

Z
∞

0

dQ2

Z
∞

νthr

dν
E3
min

�
ηFð0Þ

1

þM
ν

�
3νEmin

Q2
þ1

�
ηFð0Þ

2 þνþ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2þQ2

p

4ν
Fð−Þ
3

�
;

ð10Þ

where Emin ¼ ðνþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þQ2

p
Þ=2 and νthr ¼ ϵþQ2=2M.

The E-even piece was recently addressed in Refs. [8,9] and
will be discussed in the text around Eq. (22). In the rest of the
Letter, I concentrate on theE-odd part and estimate its size in
two different models.
Dimensional analysis with the photonuclear sum rule.—

The photonuclear sum rule expresses the electric dipole
polarizability αE as an integral over electromagnetic struc-
ture functions F1;2

αE ¼ 2α

M

Z
∞

ϵ

dν
ν3

F1ðν; 0Þ ¼ 2α

Z
∞

ϵ

dν
ν2

∂
∂Q2

F2ðν; 0Þ: ð11Þ

The equality between the representations with F1 and the
Q2 slope of F2 is a reflection of gauge invariance. The
electromagnetic structure functions should be similar to
their vector charged current–electromagnetic current inter-
ference counterpart. I next assume the very low Q2 under
the integral to dominate (hence Emin → ν), and the Q2

dependence of the dipole polarizability to follow that of the
nuclear form factor ∼e−R2

ChQ
2=6. Discarding the contribution

of F3 for which no information in terms of polarizabilities
is available, I obtain for the βþ case

Re□odd
γW ∼ ð4αE=πNR2

ChÞE: ð12Þ

The observed approximate scaling of nuclear radii with
the atomic number RCh ∼ R0A1=3 with R0 ≈ 1.2 fm [11],
and that of the nuclear electric dipole response αE∼
ð2.2 × 10−3ÞA5=3 fm3 [12], leads to an E-dependent cor-
rection to the differential decay rate,

δNSðEÞ ¼ 2Re□odd
γW ðEÞ ¼ 2 × 10−5

�
E

MeV

�
A
N
: ð13Þ

Note that for all measured superallowed decays A=N ≈ 2.
Estimate in the free Fermi gas model.—In a microscopic

picture, a large part of the nuclear polarizability can be
explained by the quasielastic mechanism. The generalized
Compton reaction on a nucleus proceeds via the knockout
of a single active nucleon by the initial electroweak probe,
leaving the remaining part of the nucleus unaffected, and

the reabsorption of the nucleon back into the nucleus
accompanied by the emission of the final photon; see
Fig. 2. The finite gap between the bound state and the
continuum (removal energy) and the Fermi momentum kF,
the typical momentum of a nucleon inside the nucleus, are
the two relevant parameters that govern the size of the
nuclear polarizability. In the case of a decay process, the
initial and final states are not identical due to the n → p
(p → n) conversion for the β− (βþ) process. Apart from the
change of the nucleon species and the charge of the nucleus
in the initial (parent) and final (daughter) state, the mass of
the daughter is smaller, which is a prerequisite for the decay
to take place. For the quasielastic process W� þ A →
nðpÞ þ A00 → γ þ A0, with A00 being a spectator nuclear
state, there are two distinct removal energies at the first and
the second stage of the reaction. Specifically for the βþ
process, ϵ1 ¼ MA00 þMn −MA and ϵ2 ¼ MA00 þMn−
MA0 , obeying ϵ2 > ϵ1. In a recent work [9] it was proposed
to use an effective removal energy ϵ̄ ¼ ffiffiffiffiffiffiffiffiffi

ϵ1ϵ2
p

to simplify
the calculation. For the 20 superallowed βþ decays listed in
Ref. [3], the effective removal energies fall within a narrow
range, ϵ̄ ¼ 7.5� 1.5 MeV [9]. In the free Fermi gas (FFG)
model the structure functions entering Re□γW have a
generic form,

ð1=NÞFiðν; Q2Þ ¼ fBi ðQ2ÞSðν; Q2; ϵ̄; kFÞ; ð14Þ

with the spectral function

S ¼ FPðjq⃗j; kFÞ
Z

d3k⃗jϕðkÞj2δ(ðkþ qÞ2 −M2): ð15Þ

Above, k is the 4-momentum of the active nucleon, ϕðkÞ is
themomentumdistribution in the FFGmodel, and jϕðkÞj2 ¼
3=ð4πk3FÞθðkF − kÞ is normalized as

R
d3k⃗jϕðkÞj2 ¼ 1.

Pauli blocking is described by the Pauli function

FPðjq⃗j; kFÞ ¼
3jq⃗j
4kF

½1 − q⃗2=ð12k2FÞ� for jq⃗j ≤ 2kF; ð16Þ

and FP ¼ 1 otherwise, and jq⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þQ2

p
stands for the

3-momentum of the virtual photon (W� boson). The δ
function reflects the knockout nucleon being on shell. The
integration in Eq. (15) can be carried out analytically [9],
after which the dependence of the spectral function S on the
breakup threshold becomes explicit. Finally, the residues fi
corresponding to the coefficient in front of the δ function in

FIG. 2. Quasielastic contribution to the nuclear γW box.
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the nucleon Born contribution read fð0Þ1 ¼ ðQ2=8ÞGW
MG

S
M,

fð0Þ2 ¼ ðQ2=4Þ½GV
EG

S
E þ τGV

MG
S
M�=ð1þ τÞ, and fð−Þ3 ¼

−ðQ2=4ÞGAGV
M, with GS;V

E;M ¼ Gp
E;MðQ2Þ �Gn

E;MðQ2Þ
being the nucleon isoscalar and isovector electromagnetic
form factors, the axial form factor GA with GAð0Þ ¼
−1.2755, and the nucleon recoil τ ¼ Q2=4M2

p. A numerical
evaluation with the effective separation energy ϵ̄ ¼ 7.5�
1.5 MeV and Pauli momentum kF ¼ 235� 10 MeV
leads to

δNSðEÞ ¼ ð2.8� 0.4Þ × 10−4ðE=MeVÞ: ð17Þ
This estimate is 1 order of magnitude larger than the naive
estimate with the nuclear electric dipole polarizability
and the nuclear size. It is well known that quasielastic cross
sections with slightly virtual photons are much larger than
with real photons, so the estimate αEðQ2Þ ∼ αEð0Þe−R2

ChQ
2=6

used in the previous section is likely to underestimate the
actual effect. On the other hand, the FFGmodel is known to
overestimate the quasielastic response at very low values of
Q2 where meson exchange currents tend to lead to a
suppression. So the realistic size of the effect is likely to
lie between those two extremes.Note that the contribution of

Fð−Þ
3 dominates over the other two terms in Eq. (10) in FFG

due to the large nucleon isovector magnetic moment.
Numerical results and the effect on the F t values.—

Above, I obtained the energy-dependent correction in two
different models which give an estimate of the lower and
upper bounds of the effect. For numerical analysis I will use
their average with a 100% uncertainty,

δNSðEÞ ∼ ð1.6� 1.6Þ × 10−4ðE=MeVÞ: ð18Þ

This result is independent of the nucleus and is directly
observable if the β spectrum is measured. If only the total
rate is observed, the respective correction to the F t value is
obtained by integrating δNSðEÞ over the β spectrum. This
correction will be decay specific via the Q value,
Q ¼ MA −MA0 , with MA ðMA0 Þ being the mass of the
parent (daughter) nucleus. It is defined as

δENS¼
Z

Em

me

dEρ0ðE;EmÞδNSðEÞ=
Z

Em

me

dEρ0ðE;EmÞ; ð19Þ

with ρ0 ¼ EpðEm − EÞ2 being the tree-level decay spec-
trum function, p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

e

p
the electron 3-momentum,

me the electron mass, and Em ¼ ðM2
A −M2

A0 þm2
eÞ=2MA ≈

Q the maximal electron energy available in a given decay.
The integration with the estimate of Eq. (18) leads to

δENS ≈ ð8� 8Þ × 10−5ðQ=MeVÞ; ð20Þ

which modifies the F t values as F t0 ¼ F tð1þ δENSÞ.
The shift due to the nuclear polarizability contribution

δF t ¼ F t × δNSE is shown for the 14 most accurately
measured superallowed decays in Table I along with the
central values and the respective uncertainties of the
original analysis of Ref. [3]. It is seen that for the seven
most precise F t values (26mAl through 54Co) the new
correction is comparable with their uncertainties. A sys-
tematic, positive sign-definite shift of all F t values will
then reflect in a substantial shift of their average, F t ¼
3072.27ð44Þ s → F t ¼ 3073.65ð46Þ s, where all uncer-
tainties were treated as statistical, and the uncertainty in
δ0R was not accounted for (see Ref. [3] for the discussion of
its inclusion). However, the new energy-dependent correc-
tion is a systematical one, and since I assigned a 100%
uncertainty on its effect on the individual F t values, I do
the same for the shift of their average,

½δF t�E-dep ¼ ð1.4� 1.4Þ s: ð21Þ
This effect has always been neglected in the past because it
was assumed to be too small. Present analysis shows that
this assumption is not justified, and if the relative precision
of 2 × 10−4 for the F t value and its constancy as a test of
CVC and a constraint of nonstandard scalar interactions is
to be maintained, a robust estimate of this novel effect at the
relative 20%–30% or better is necessary.
Recently, the nuclear modification of the energy-

independent correction Re□even
γW was reevaluated in

Ref. [9], and this modification was found to be under-
estimated in the literature [3,10]. That analysis of the inner
correction suggested a shift of a size similar to that obtained
in this Letter but in the opposite direction,

½δF t�E-indep ¼ −ð1.8� 1.2Þ s: ð22Þ

TABLE I. For 14 superallowed decay channels, the respective
Q value, the fractional effect on the decay rate obtained from the
energy-dependent correction, and the respective shift in the F t
value, in comparison with the F t values and uncertainties taken
from Ref. [3], are displayed.

Decay Q (MeV) δENSð10−4Þ δF t (s) F t (s) [3]

10C 1.91 1.5 0.5 3078.0(4.5)
14O 2.83 2.3 0.7 3071.4(3.2)
22Mg 4.12 3.3 1.0 3077.9(7.3)
34Ar 6.06 4.8 1.5 3065.6(8.4)
38Ca 6.61 5.3 1.6 3076.4(7.2)
26mAl 4.23 3.4 1.0 3072.9(1.0)
34Cl 5.49 4.4 1.4 3070.7þ1.7

−1.8
38mK 6.04 4.8 1.5 3071.6(2.0)
42Sc 6.43 5.1 1.6 3072.4(2.3)
46V 7.05 5.6 1.7 3074.1(2.0)
50Mn 7.63 6.1 1.9 3071.2(2.1)
54Co 8.24 6.6 2.0 3069.8þ2.4

−2.6
62Ga 9.18 7.3 2.2 3071.5(6.7)
74Rb 10.42 8.3 2.6 3076(11)
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The two corrections contain the same physics and should
be considered jointly. When added together, the positive
energy-dependent correction cancels the reduction of the
energy-independent correction, leaving the central value
F t unchanged but with a larger uncertainty,

F t ¼ 3072ð2Þ s: ð23Þ

This cancellation supports the conclusion of Ref. [8] that
the correct value of Vud extracted from the superallowed
nuclear decays is lower than previously thought. While
individual shifts are substantial, no firm conclusion on the
shift of the central value of F t with respect to the analysis
of Ref. [3] can be made at this stage. The size of the nuclear
corrections found in this Letter and in Ref. [9] can be used
to estimate the additional uncertainty, and the deficit of
the CKM first-row unitarity becomes jVudj2 þ jVusj2þ
jVubj2 − 1 ¼ −0.0016ð6Þ.
In summary, I considered a novel effect of a distortion of

the electron spectrum in superallowed nuclear β decays due
to nuclear polarizabilities. This effect has been neglected in
the literature based on dimensional arguments originating
from the neutron decay. I showed that these arguments are
not applicable to nuclear decays where the Q values and
nuclear separation energies are of similar size, leading to a
slightly higher probability for emitting the electron at the
upper end of the spectrum than at the lower end. I estimated
the size of the correction to be applied to the F t values
using a naive dimensional analysis operating with the
dipole nuclear polarizability, and in the free Fermi gas
model, and I demonstrated that the effect is sizable and
shifts the resulting average F t value towards larger values.
On the other hand, the free Fermi gas estimate of the
energy-independent nuclear polarizability correction of
Ref. [9] led to a shift of the average F t value in the
opposite direction and of a similar size. Upon incorporating
both contributions, the F̄ t value remains roughly unaf-
fected. The exact extent of this cancellation and the size of
both effects should be assessed in a more precise way.
Moreover, in this Letter and in Ref. [9] only the one-
nucleon part of the nuclear Green’s function was consid-
ered. Remaining contributions coming from two-nucleon
contributions were taken from Ref. [3] for δNS and
neglected for δENS. Both contributions are worth an inves-
tigation in an upcoming work that should capitalize on
recent advances in nuclear theory.

The distortion of the energy spectrum of positrons from
nuclear βþ decay is a measurable effect. One of the
motivations of high-precision measurements of the β decay
spectra is the search for new scalar and tensor interactions
[2]. The presence of new scalar interactions, e.g., would
lead to a distortion of the lower part of the spectrum,
∼bðme=EÞ. The energy-dependent effect considered here
would enhance the higher part of the spectrum with respect
to the analysis of Ref. [7] and beyond its claimed
uncertainty, and planned experiments may help confirming
or constraining this novel effect. Conversely, experimental
searches for Fierz interference in β decays may crucially
depend on its inclusion: if both distortions go in the same
direction, their joint effect on the spectrum may not change
its shape, erroneously returning a null result for the Fierz
interference if the distortion due to δNSðEÞ is not properly
taken into account.
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