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When are two collider events similar? Despite the simplicity and generality of this question, there is no
established notion of the distance between two events. To address this question, we develop a metric for the
space of collider events based on the earth mover’s distance: the “work” required to rearrange the radiation
pattern of one event into another. We expose interesting connections between this metric and the structure
of infrared- and collinear-safe observables, providing a novel technique to quantify event modifications due
to hadronization, pileup, and detector effects. We showcase how this metrization unlocks powerful new
tools for analyzing and visualizing collider data without relying upon a choice of observables. More
broadly, this framework paves the way for data-driven collider phenomenology without specialized
observables or machine learning models.
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High-energy particle collisions produce a tremendous
number of intricately correlated particles, especially when
energetic quarks and gluons are involved. Behind this
apparent complexity, however, the overall flow of energy
in an event is a robust memory of its simpler partonic
origins [1–8]. Surprisingly, no definition of the similarity
between events presently exists that sharply captures this
correspondence. In the absence of a metric, efforts typically
fall back upon ad hoc methods such as comparing specific
observables [9–13] or matching the pixels of calorimeter
images [13–17]. These approaches suffer from significant
pathologies: disparate event topologies can give rise to
identical observable values, while pixels lack stability
under small perturbations. A theoretically and experimen-
tally robust definition of the “distance” between events
would profoundly expand our ability to explore the
structure of collider data and unlock entirely new ways
to probe events.
In this Letter, we advocate for the earth (or energy)

mover’s distance (EMD) [18–22] as a metric for the space
of collider events. We propose a variant of the EMD,
inspired by Refs. [21,22], that allows events with different
total energies to be sensibly compared. The EMD is the
minimum “work” required to rearrange one event E into
the other E0 by movements of energy fij from particle i in
one event to particle j in the other:
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where i and j index particles in events E and E0, respec-
tively, Ei is the particle energy, θij is an angular distance

FIG. 1. The optimal movement to rearrange one top jet (red)
into another (blue). Particles are shown as points in the rapidity-
azimuth plane with areas proportional to their transverse mo-
menta. Darker lines indicate more transverse momentum move-
ment. The energy mover’s distance in Eq. (1) is the total “work”
required to perform this rearrangement.
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between particles, and Emin ¼ minðPiEi;
P

jE
0
jÞ is the

smaller of the two total energies. R is a parameter that
controls the relative importance of the two terms. While
energies and angles are used here for clarity, we will use
transverse momenta pT and rapidity-azimuth ðy;ϕÞ dis-
tances for our applications relevant for the Large Hadron
Collider (LHC).
The EMD that we propose in Eq. (1) has dimensions of

energy, where the first term quantifies the difference
between the two radiation patterns and the second term
accounts for the creation or destruction of energy. It is a true
metric (satisfying the triangle inequality) as long as θij is a
metric and R ≥ 1

2
θmax, where θmax is the maximum attain-

able angular distance between particles. For instance, R
must be at least the jet radius for conical jets. Formally, the
EMD metrizes the energy flow as it treats events differing
only by soft particles or collinear splittings identically. This
hints at a deep connection to infrared and collinear (IRC)
safety of observables [23–26], which we explore further
below.
A metric for comparing events is particularly relevant

for probing the substructure of jets [27–37], collimated
sprays of particles resulting from the fragmentation and
hadronization of high-energy quarks, and gluons via
quantum chromodynamics (QCD). Here, we will consider
three classes of jets that have different intrinsic topologies:
three-pronged boosted top quark jets, two-pronged boosted
W boson jets, and single-pronged QCD (quark or gluon)
jets. We generate proton-proton collision events at the LHC
with PYTHIA 8.235 [38] at

ffiffiffi
s

p ¼ 14 TeV including hadro-
nization and multiple particle interactions. Anti-kT jets [39]
with a jet radius of 1.0 are clustered using FASTJET 3.3.1
[40], and up to two jets with pT ∈ ½500; 550� GeV and
jyj < 1.7 are kept. This pT selection is representative of an
intermediate energy range for jets at the LHC and allows for
sensitivity to the effects of both terms in Eq. (1). Jets are
longitudinally boosted and rotated to center the jet four-
momentum at ðy;ϕÞ ¼ 0 as well as to vertically align the
principal component of the constituent transverse momen-
tum flow in the rapidity-azimuth plane; this removes the
dependence of the EMD on these jet isometries.
We record the final-state hadrons, as well as the partons

(before hadronization) and the hardW=top decay products,
that are within a jet radius of the jet four momentum. We
use the Python Optimal Transport [41] library to compute
EMDs with the minimal choice of R ¼ 1.0, the jet radius.
The energy difference penalty in Eq. (1) is implemented
using a fictitious particle at a distance R from all other
particles. Figure 1 shows the optimal energy movement
between two example top jets.
We begin by highlighting a remarkable mathematical

property of the EMD, which provides a quantitative under-
standing of an observable’s sensitivity to the radiation
pattern. Specifically, we relate the EMD to additive
IRC-safe observables via the Kantorovich-Rubinstein [42]

duality theorem. Applying this theorem to our variant of
the EMD, we derive the following mathematical bound
between two events E and E0:
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where i, j index E; E0, respectively, p̂i is the particle angular
position, and Φ is any L-Lipschitz function (essentially,
with gradient size bounded by L) which vanishes at the
center of the space (e.g., the jet axis). The implications of
Eq. (2) are simple yet profound: the similarity of events
according to the EMD metric guarantees the closeness of
their O ¼ P

M
i¼1 EiΦðp̂iÞ observable values in a precise

way that depends on Φ. By formulating IRC-safe
observables in the language of additive energy-weighted
structures [43,44], Eq. (2) can be applied to provide a
robust bound.
As a concrete example, we demonstrate how the EMD

bounds hadronization modifications of jet angularities [45]
(see also Refs. [46–49]), λðβÞ ¼ P

ipT;iθ
β
i where θi is

the rapidity-azimuth distance to the jet axis. These
angularities are evidently of the form in Eq. (2) with
Φðyi;ϕiÞ ¼ ðy2i þ ϕ2

i Þβ=2, which for β ≥ 1 is a β-Lipschitz
function over our R ¼ 1.0 jet cone; hence:

ΔλðβÞ ¼ jλðβÞðEÞ − λðβÞðE0Þj ≤ β EMDðE; E0Þ: ð3Þ

The EMD between two events yields a robust upper bound
of the difference in their β ≥ 1 angularity values. This
bound is borne out in Fig. 2, where the angularity

FIG. 2. Two-dimensional histogram of the EMDbetween 30 000
QCD jets before and after hadronization versus the corresponding
β ¼ 1 angularity modification. The red region is excluded based
on the bound in Eq. (3), shown as a dashed red line. The bound is
clearly satisfied and is nearly saturated for EMD≲ 10 GeV.

PHYSICAL REVIEW LETTERS 123, 041801 (2019)

041801-2



differences and EMDs are computed for the same QCD jets
before and after hadronization. For this jet pT range,
hadronization modifies events by EMD≲ 30 GeV and
correspondingly modifies λðβ¼1Þ by no more than this
amount. The intuitive picture of parton-hadron duality
[5], that the energy flow in an event is robust to non-
perturbative effects, is quantified by considering the EMD
that these nonperturbative effects can induce.
A metric space is also useful for classification without

requiring specially designed observables or parametrized
machine learning algorithms. One of the simplest examples
of a nonparametric classifier is the k-nearest-neighbor
(kNN) algorithm [50], whereby a given event’s closest k
neighbors in a reference set are used to determine class
membership. We build a kNN classifier applied to the
problem of discriminating W jets from QCD jets using a
balanced training sample of 100 000 total jets. The
classifier output is the number of W jets among the k ¼
32 nearest neighbors by EMD. This method should
approach the optimal IRC-safe classifier with a sufficiently
large dataset. The performance of the resulting EMD kNN
classifier is shown in Fig. 3 as a receiver operating
characteristic (ROC) curve, with the area under the ROC
curve (AUC) also shown. For comparison, we include an
energy flow network (EFN) and a particle flow network
(PFN) [44] as well as a linear classifier trained on energy
flow polynomials (EFPs) [43]. All classifiers are trained on
a 100 000 training sample and evaluated on a 20 000 test
sample, with the neural networks using 20% of the training

sample for validation and a batch size of 125 (see Ref. [44]
for additional details). The kNN approaches the perfor-
mance of these state-of-the-art classifiers and significantly

outperforms a ratio τðβ¼1Þ
2 =τðβ¼1Þ

1 of N-subjettiness observ-
ables [51,52] designed to identify two-prong substructure.
It is expected that the performance of the kNN method
would improve with more sophisticated kernel density
estimation techniques.
It is worth noting that while searching through a large

reference set of events to find neighbors naïvely requires
every possible pairwise comparison, in a metric space the
triangle inequality can provide a great deal of simplifica-
tion. Specialized data structures known as metric trees
[53–56] have been developed to achieve query times that
are approximately logarithmic in the size of the dataset.
While we use direct searches throughout this Letter, this is
not a fundamental limitation and we leave metric tree query
optimizations to future work.
Once a space has been equipped with a metric, it is

natural to ask about the structure of the induced manifold.
The most basic aspect of the manifold underlying the
data is its dimension, and several notions of its intrinsic
dimension exist [57]. The correlation dimension [58,59], a
type of fractal dimension, is suitable for our purposes and is
defined using only pairwise distances:

FIG. 3. ROC curves showing the boosted W classification
performance of a k ¼ 32 nearest-neighbor EMD classifier, which
requires no choice of observables or parametrized machine
learning architectures. The EMD classifier is competitive with
machine learning techniques known to be good multiprong
classifiers, such as PFNs, EFNs, and EFPs.

FIG. 4. The correlation dimension of top,W, and QCD jets as a
function of the energy scale Q using hadrons (solid), partons
(dashed), and hard decay products (dotted). Generally, QCD jets
are the lowest dimensional and top jets are the highest dimen-
sional. By comparing partons and hadrons, one sees that
hadronization affects the structure of the space at scales below
about 30 GeV. Similarly, the hard decay structure of top and W
jets governs their dimension at high scales. Below about 10 GeV,
the data become very high dimensional and sparse, making
dimension estimation difficult.
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dimðQÞ ¼ Q
∂
∂Q ln

X

1≤k<l≤N
Θ½EMDðEk; ElÞ < Q�; ð4Þ

where N is the total number of events and the summand
indicates whether event k is within EMD Q of event l.
The correlation dimension is an intrinsically scale-

dependent quantity, which is particularly useful as we
anticipate different physical effects to dominate jets at
different scales. Shown in Fig. 4 is the intrinsic dimension
of our top, W, and QCD samples over energy scales Q
ranging from 10 to 1000 GeV obtained from Eq. (4) with
25 000 jets. At high energy scales Q, the EMD is governed
by the hard decay kinematics, resulting in a relatively
simple manifold with low intrinsic dimension. At energy
scales Q approaching the fragmentation and hadronization
scales, the structure of the events becomes increasingly
complex and the dimension correspondingly increases.
It is satisfying that the dimension is relatively low for a
wide range of relevant energies, which is critical for a
variety of metric-based techniques such as classification
and low-dimensional visualization to work effectively with
a realistic amount of data.
Beyond probing its dimension, the entire space of jets can

be visualized using techniques such as t-distributed stochas-
tic neighbor embedding (t-SNE) [60–63], which finds a low-
dimensional embedding of the data that attempts to respect
the distances between points. Figure 5 shows a t-SNE
embedding of 5 000W jets with pT ∈ ½500; 510� GeV into

a two-dimensional manifold using SCIKIT-LEARN [64]. The
narrower pT range focuses the EMD on the jet substructure
and was found to yield sharper visualizations, with other
choices also yielding sensible results. TheW jets populate a
circular subspace roughly corresponding to the energy
sharing of the two prongs. As the W jet originates from a
resonant decay, the two decay quarks (after rotation) are
solely described by their energy sharing, which satisfyingly
emerges from themanifold ofW jets.Moreover, the center of
the ring, distant from the annulus, tends to contain the most
complex jet topologies, resulting in a type of automatic
anomaly detection.
Finally, we illustrate the use of EMD for a new kind of

visualization strategy that clusters events to better under-
stand observable distributions. To describe a given set of
events, such as those in a histogram bin, we find the k
events (called medoids) which best describe the set in that
the sum of distances of each event to its closest medoid
is minimized. This procedure works for any observable
and provides an immediate glimpse of the types of event
topologies that correspond to a given observable value. We
use an iterative approximation of k medoids from the
PYCLUSTERING Python package [65]. As an illustration,
Fig. 6 shows the jet mass for QCD jets with k ¼ 3 medoids
per bin, providing a snapshot of the different event
topologies at different masses.
In conclusion, we have equipped the space of events

with a metric, thereby allowing a powerful suite of new
tools and techniques to be directly applied to collider
physics. There are many potential applications of the
EMD at colliders beyond those presented here. Pileup
mitigation or detector reconstruction could use the EMD to

FIG. 5. The embedding of W jets into a two-dimensional space
with t-SNE. The gray contours represent the density of embedded
jets. Examples of W jets are shown throughout the space. The
color of each jet corresponds to its angularity λðβ¼1=2Þ fractile to
quantify the energy sharing of the two prongs. An annulus
emerges with jets in the lower (upper) region of the manifold
having a more energetic lower (upper) subjet. More complex
topologies with the largest angularity values populate the center
of the manifold.

FIG. 6. The jet mass distribution for QCD jets, with k ¼ 3
medoids shown above each bin. This visualization highlights that
simple one-prong topologies dominate low jet masses and
complex two-prong topologies exist at high jet masses.
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benchmark performance and thus benefit from the quanti-
tative bounds on IRC-safe observable modifications.
Further, machine learning models could be trained to
optimize the EMD, related to recent efforts in generative
modeling [66–69]. By counting neighbors, one could also
perform density estimation in the space of events [70].
While we have focused on jet substructure, analogous
studies could be carried out at the event level, which may
require working with composite objects such as jets for
realistic computation times. It would be interesting to
explore an EMD strategy for unfolding by matching
detector-level and simulated events. One might consider
alternatives to the EMD, such as symmetry-projected
metrics [22] or p-Wasserstein metrics [71,72] beyond
our p ¼ 1 case, though our conclusions should hold for
any physically sensible metric. Further, using the EMD for
model-independent anomaly detection [73–79] by finding
isolated or clustered event topologies could empower
searches for physics beyond the standard model at the
LHC.
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