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Unruh Effect without Thermality
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We show that uniformly accelerated detectors can display genuinely thermal features even if the Kubo-
Martin-Schwinger (KMS) condition fails to hold. These features include satisfying thermal detailed
balance and having a Planckian response identical to cases in which the KMS condition is satisfied. In this
context, we discuss that satisfying the KMS condition for accelerated trajectories is just sufficient but not
necessary for the Unruh effect to be present in a given quantum field theory. Furthermore, we extract the
necessary and sufficient conditions for the response function of an accelerated detector to be thermal in
the infinitely adiabatic limit. This analysis provides new insight about the interplay between the KMS
condition and the Unruh effect, and a solid framework in which the robustness of the Unruh effect against
deformations of quantum field theories (perhaps Lorentz-violating) can be answered unambiguously.
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Quantum field theory (QFT) is considered to be an
effective theory that is valid outside the quantum gravity
domain, typically defined in terms of a length scale # [1].
This theoretical framework is therefore expected to become
less precise as this scale is approached, perhaps eventually
failing completely as a correct description of nature. In
most cases, there is a hierarchy of scales that ensures that
the predictions of QFT within its domain of validity are not
contaminated by the ultraviolet physics below #. However,
it is known that ultraviolet deformations of the structure of
QFT can percolate into this domain of validity, spoiling the
decoupling of scales [2—-6]. When present, this phenome-
non brings the possibility of testing theoretical frameworks
which would be otherwise impossible (or extremely diffi-
cult) to probe. Examples of this behavior that have been
recently discussed in the literature include the response of
particle detectors along inertial trajectories in the frame-
work of modified dispersion relations [7], polymer quan-
tization [8-10], and in nonlocal field theories [11], or the
transmission of information through nonlocal fields [12].
Determining the deformations that lead to this percolation,
and finding the predictions which are affected, is of clear
importance for quantum gravity phenomenology.

Here, we focus on a central prediction of QFT: the Unruh
effect [13—15]. This well-known phenomenon [16] illus-
trates that the concept of particle is observer dependent in
QFT, which is inextricably linked to black hole evaporation
[17,18]. Aside from its importance on theoretical grounds,
there are reasonable prospects for detecting this effect in the
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near future (see, e.g., Refs. [19-22]). In standard Lorentz-
invariant QFT, the Unruh effect is defined as the perception
of a thermal bath by uniformly accelerated observers that
interact with a quantum field in its ground state [23]. The
interaction of the observer with the field is modeled in
terms of particle detectors [15,24-26], whose coupling to
the field is characterized by their so-called response
function [27]. The thermal behavior of the response
function of uniformly accelerated detectors is guaranteed
by the Kubo-Martin-Schwinger (KMS) condition [28-30]
that characterizes thermal states. Hence, the KMS condition
is sometimes taken as the definition of the Unruh effect.
However, one can question whether the field state being
KMS for accelerated observers is necessary for a detector to
perceive the Unruh effect.

Indeed, as we make explicit below, large sets of defor-
mations of QFT (including the introduction of a cutoff on
spatial momenta) lead to violations of the KMS condition
even in the vacuum state. There are two possible attitudes
with respect to this observation. The first one is to assume
directly that these deformations would erase any trace of
the Unruh effect (see, for instance, Ref. [31] for a particular
example in the framework of polymer quantization). The
second one, put forward in this Letter, is admitting that the
KMS condition is unnecessarily restrictive from a physical
perspective. In the presence of deformations of QFT with
typical length scale 7, it is reasonable to expect that small
deviations from an exact thermal behavior, involving this
new scale, would appear. This broader set of scenarios
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cannot be characterized by the KMS condition, which will
be generally violated even though the response function can
display thermal features. This has been noticed before in
particular scenarios involving cavities [32], specific curved
geometries [33], or excited states in theories in which the
ground state is KMS [34].

Following this intuition, here we systematically analyze
and determine the minimal requirements that single out the
scenarios in which the violations of the KMS condition are
mild enough so that the Unruh effect is preserved. We first
prove that the long-time response function of a uniformly
accelerated detector interacting with fields that are invariant
under spacetime translations and spatial rotations (but not
necessarily Lorentz boosts) is reduced, in the adiabatic
limit, to a single-variable integral of the sum of the residues
of the poles of the Wightman function inside a horizontal
strip of the complex plane. This general result permits us to
calculate explicitly the response function in a generality of
situations, allowing us to critically revise cases of particular
deformations studied previously [31,35-42], and define in
general terms the conditions for the preservation of the
Unruh effect. Crucially, we find that the preservation of the
Unruh effect is less restrictive than the KMS condition.

Deformations of the Wightman function.—A relativistic
QFT is given by a Hilbert space H of states and a set of
unitary operators associated with the transformations in the
Poincaré group. H has to contain a unique state |0) invariant
under Poincaré transformations. Field operators ¢(X) are
operator-valued distributions acting on the space of test
functions defined over R”. The two remaining conditions
are energy positivity and locality (field operators commute
on spacelike intervals).

Wightman functions contain the full information about a
QFT satistying the axioms above [43]. For our purposes
here, it is enough to study the two-point Wightman function
W(X", X") = (0|p(X")p(X")|0), since the leading order
detector response for any state is only a function of this
quantity through the so-called response function:
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Here, W(7”,7') is the pullback of the Wightman function
W(X",X') to a given trajectory in spacetime, X(7).
Equation (1) arises naturally in the study of the excitation
and decay probabilities in the Unruh-DeWitt model of a
detector interacting with the field ¢(X) (see Ref. [44], for
instance, for a detailed description), which assumes an
interaction Hamiltonian H;(7) = Ay(z/o)u(z)p(X(7)),
where p(r) is the monopole moment operator of the
detector and y(r/0) € C*(R) is a square-integrable
switching function that controls the duration and the form
of the window of time in which the interaction between the
detector and the field takes place. This kind of switching is

known as adiabatic [44,45], and it depends on a single
width parameter ¢ that provides a measure of the inter-
action time scale (so that the infinitely adiabatic limit
o — oo corresponds to a detector switched on forever). The
probabilities of excitation and decay are proportional to
Eq. (1), with respectively positive and negative values of Q
(the energy gap of the detector is |Q|). However, the
corresponding proportionality factors are independent of
the properties of the QFT, and only depend on the proper-
ties of the detector (including its monopole moment) and
the coupling 4 € R between the detector and the field
[27,46]. Hence, the quotients of these probabilities, which
are the quantities of interest in order to determine whether
or not the response of the detector is thermal, are inde-
pendent of these proportionality factors.

The Wightman function is a distribution, so that Eq. (1)
would be meaningful only for suitable choices of the space
of switching functions such as, for instance, functions with
noncompact support that decay faster than any polynomial.
For our purposes here, it will be enough to consider Gaussian
switching functions normalized so that [ dyy(y)* = 1,
though other choices are possible. Hence, we can safely
forget about the distributional nature of the Wightman
function (and its deformations introduced below), and work
with it as if it was a function, as long as we keep in mind that
this quantity is always under the integral sign in Eq. (1).

On general grounds, the introduction of an additional
length scale £ leads to deformations of the functional form
of the Wightman function. These deformations encode the
leading modifications arising from the particular ultraviolet
completion chosen, or may just represent physical cutoffs.
Let us make the following technical assumptions.

(1) There is an effective continuum flat description of
spacetime in which the deformed Wightman function can
be written as a function of the spacetime coordinates
X+ = (1,x).

(2) The functional form of the deformed Wightman
function may break explicitly the invariance under Lorentz
boosts, while keeping spacetime translations and spatial
rotations as symmetries.

These are fairly general assumptions. For instance,
condition (1) permits us to include in our analysis discrete
or quantum-mechanical features of the spacetime structure.
Condition (2), together with the transformation rules for
the vacuum state and field operators, implies that the
Wightman function is invariant under translations, hence
being a function of the differences Ar =" -7 and
Ax = x" — x'. Without loss of generality, we can always
write the Wightman function in the fairly general form:

W, = W,(At, Ax). (2)
Infinitely adiabatic limit for uniformly accelerated

observers.—The response function F,(Q, o) associated
with a given deformation takes the same form as Eq. (1)
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but with W(z”, 7’) replaced with W, (7", 7). In the follow-
ing, we consider only trajectories with constant acceler-
ation a and Gaussian switching functions, and change the
integration variables to w =7" +7 and z =7" - 7. It is
straightforward to check that the pullback of any Wightman
function of the form provided in Eq. (2) depends on z only
through the combination sinh(az/2) [47], which implies
that W,(w,z + 4rni/a) = W,(w,z). To the best of our
knowledge, the existence of this symmetry has not been
noticed before. This allows using the methods of complex
analysis to deal with the response function, choosing a
rectangular integration contour in the complex plane (we
are further assuming that the deformed Wightman function
extends to a meromorphic function in an open subset
enclosing this contour, which is satisfied by a large class of
deformations, including all the examples discussed explic-
itly here and in previous literature). The integral in z can
then be reduced to a sum of residues [47] under the
following falloff condition.

(3) The deformed Wightman function is polynomially
bounded in |Af| and |Ax| when these absolute values tend
to infinity.

The result of these manipulations is

7
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(3)
where f,,(z) = e ¥/7 Wy(w,z)e ™ with the slight
abuse of notation W,(w,z) = W,(7"(w,z),7(w,2)).

On the other hand, {z;},c; is the (finite) set of poles in
z of the Wightman function [equivalently, f,,(z)] on the

TABLE L.

horizontal strip of the complex plane S C C defined by
0 <Imfz] < 4n/a.

The Wightman function is generally singular on the real
axis in the coincidence limit. This is typically dealt with
introducing a regulator z + ie. This can also be understood
as an infinitesimal displacement of one of the proper times
7' or 7’ (more details in this regard are given later). This
regulator is removed in the final expression for the response
function after integration. We assume that all the real poles
in z are regularized in the same way. In deformations that
are Lorentz breaking, additional real poles in w can appear.
In this case, the infinitesimal displacement of the proper
times 7 or 7” leads to w = ie. Physical results should not
depend on the sign of the regulator in w.

Preservation of the Unruh effect—Equation (3) deter-
mines the infinitely adiabatic limit of the response function
for all the deformations satisfying the requirements (1)—(3).
We have used it in order to calculate the response function
in several examples. The results are compiled in Table L.
Most importantly, we want to highlight that Eq. (3) can be
exploited in order to extract the conditions that guarantee
the preservation of the Unruh effect.

On general grounds, the Unruh effect is preserved if the
response rate of the detector along uniformly accelerated
trajectories has the right ¢ — 0 limit, namely, if
lim,_oF »(Q, 0) = F(Q, 00). Importantly, this does not
imply that the contributions depending on £ vanish in the
o — oo limit, but rather that they appear in the adiabatic
response as subleading corrections to the usual Unruh
effect. In the infinitely adiabatic limit, the only possible
dimensionless combinations of the physical quantities
involved are Za and £Q. Hence, if the condition above
is satisfied, the £ = O expressions for the response func-
tions are recovered up to small corrections when Za < 1
and 7Q < 1. In other words, appreciable deviations from

Comparison of the KMS condition and the sufficient conditions for the preservation of the Unruh effect in

the adiabatic limit (for n = 4 spacetime dimensions). “Imaginary periodicity” refers to the symmetry z — z + 2zi/a
of the Wightman function [Eq. (6)], which is not equivalent to the (less restrictive) symmetry z — z + 4xi/a, which is
central to our analysis and is satisfied by all the deformations studied in this Letter. Let us note that, for simplicity, all
the examples in this table are of the form W, (A1, Ax) = Wy (AX)[1 + D, (At, Ax)] for some choice of function
D, (At, Ax). The question mark indicates a deformation that does not satisfy our condition (3).

D/(At, Ax) KMS Preservation
Imaginary periodicity  Stationarity Holomorphicity = Polynomial
2/ (AX? + £7) [35,38] v v/ v/ v v/
—at?/(AX? 4+ £*),a €R 4 v v v v
=2/ (AX? — £?) [38] 4 v X 4 X
—e~AX/2 137 48] v v v X ?
2/ A 4 X 4 v v
2/(iAt+7) X X X v v
it At/ AX? X X 4 X X
i/ At X X v v v
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the Unruh effect would only exist for accelerations or
frequencies that are of the same scale as the inverse of the
parameter of the deformation 7.

It is worth mentioning that the study of the finite-time
response, and not only its adiabatic limit, is a source of rich
phenomenology (see among others Refs. [11,12,49,50]).
This finite-time response would be sensitive to the details of
the switching, including additional physical scales that
appear in nonadiabatic switching functions. These addi-
tional scales may form new dimensionless combinations
with high-energy scales that may not be necessarily small.
This is just a reminder of the following general statement:
that two different deformations preserve the Unruh effect
does not necessarily imply that all other possible observ-
ables will agree.

We can now use Eq. (3) in order to identify the necessary
and sufficient conditions that guarantee the preservation of
the Unruh effect. Let us define the set of poles {Z;},c, that
are obtained as a continuous deformation of the original set
of poles {z%},.cx originally in S C C, with the possible
addition or splitting of poles. We can then define the
following conditions.

(A) Local uniform convergence.—The integral along
each of the contours y; containing all the deformed poles
that stem from each of the poles z¥ of the undeformed
Wightman function, but not from other poles of the latter,
recovers the undeformed contribution in the £ — 0 limit.

(B) All the poles {Z;},c; must remain in the horizontal
strip S € C; namely, {z;}re; = {Z1}ies-

(C) The sum of the residues of the poles in S C C of the
Wightman function in z, times e/ "2, must be integrable
with respect to w in the ¢ — oo limit.

(A)—(C) above are sufficient, when holding simultane-
ously, in order to preserve the Unruh effect. (A) and (C) are
necessary conditions, and also (B) unless the contribution
from the poles escaping the horizontal strip § C C is trivial
for 6 — oo.

Let us sketch the proof of this statement. Condition
(C) implies that the right-hand side of Eq. (3) is finite in the
o — oo limit. On the other hand, condition (B) implies that
all the deformed poles that stem from undeformed poles 29,
inside the horizontal strip § C C remain in S. Therefore, the
corresponding residues are all taken into account in the
right-hand side of Eq. (3). Finally, condition (A) ensures
that the sum of these residues has the right £ — 0 limit.

Regarding the Kubo-Martin-Schwinger condition.—As
mentioned previously, in Lorentz-invariant QFT the ther-
mal behavior of the response function holds exactly under
the KMS condition. In fact, it can be seen [44] that this
condition is sufficient for (thermal) detailed balance to be
satisfied,

F(—Q,00) = ez”g/“}'(Q, ), (4)

which is the smoking gun of thermal behavior. However,
we have devoted this Letter to the determination of the

minimal requirements that single out the scenarios in which
this violation is mild enough so that detailed balance is still
satisfied, possibly up to small corrections. For complete-
ness, in this section we discuss the interplay between these
different conditions, and illustrate the general discussion
with examples (see Table I).

First, let us clarify the operational definition of the
KMS condition that we will be using [44,51]. In fact, the
KMS condition is, more strictly, a series of conditions.
The first one can be defined in abstract terms as the
following property, to be satisfied by any pair of operators
A = A(t =ty) and B = B(t = t;) (for some arbitrary value
of ;) evolved in some time parameter ¢ in the Heisenberg
picture: there exists some f# € R such that

(A(r — i€)B) = (BA(t + i — i€)). (5)

We have introduced a suitable regularization (the ie terms)
that is needed in order to formally manipulate distributions
as functions. Translated in terms of the pullback of the
Wightman function W,(7",7') = (0|¢(X (")) (X (7'))]0),
the equation above reads

W, (2" —ie,7) = Wo(. 7" + if — ie). (6)

This explains why the KMS condition is sometimes defined
in the literature (see, e.g., Refs. [31,42,52]) just as the
symmetry of the pullback of the Wightman function under
the transformation 7/ — 7 +ie and 7 — ¢’ +iff — ie,
with g =2x/a.

When Eq. (5) is satisfied by all the possible operators A
and B, including the field operators ¢(X) but also the
identity operator 1, it follows that the state |0) must be
invariant under time translations. As a consequence, the
pullback of the Wightman function must be stationary [51],
namely, invariant under translations in 7 or, equivalently, a
function of z only. Note that Eq. (6) being satisfied does not
therefore imply by itself stationarity. This is especially
important for the present discussion, as it is not difficult to
show that the pullback to uniformly accelerated trajectories
of any explicitly Lorentz-violating Wightman function
cannot be stationary, and therefore it must necessarily
violate the KMS condition (the stationarity condition can
still be satisfied on inertial trajectories [7,9]).

However, the KMS condition involves additional restric-
tions [44,51], which are not always emphasized in the
literature. The pullback of the Wightman function must be
holomorphic in z in a horizontal strip of the lower complex
semiplane with a width 27z/a in the € — 0 limit, being the
real axis one of its boundaries (under the condition of
imaginary periodicity above, the position of this horizontal
strip can be shifted by an arbitrary multiple of 27i/a).
Therefore, it is not only necessary to show that Eq. (6)
holds, but also the absence of poles inside this horizontal
strip must be shown in order to claim that the KMS
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condition holds (equivalently, any poles must be located in
the boundary of the strip in the ¢ — 0 limit). Lastly, there is
another further condition, which is similar but more
restrictive than our requirement (3): the pullback of the
Wightman function inside the complex strip must be
polynomially bounded.

These are all the ingredients that are needed in order to
compare the KMS condition with the definition for the
preservation of the Unruh effect given in this Letter. This is
summarized in Table I. We can see that, as anticipated in the
introduction of this letter, the KMS condition is a sufficient
but not necessary condition for the preservation of the
Unruh effect. In particular, violating the imaginary perio-
dicity is not sufficient in order to claim that the Unruh effect
is not present. The second observation is about the interplay
between the imaginary periodicity of the Wightman func-
tion and stationarity. It may seem surprising that there are
deformations that satisfy the former but not the latter.
However, as discussed above, stationarity follows from the
stronger condition of imaginary periodicity for arbitrary
pairs of operators (including the identity 1). Moreover, it is
not difficult to see that this feature is quite general, as one
can show that

W (7, 7" + iff — ie)
=W, (At(7, 7" + if —ie), Ax(7, 7" + iff — i€))
=W,( - At(7" —ie, '), —Ax (7" — ie, T')). (7)

The first identity just makes explicit that the pullback of the
Wightman function depends on 7’ and 7’ implicitly through
the time and space intervals, while the second identity
exploits the periodicity properties of hyperbolic functions.
It follows that any Wightman function that is even in the
time and space intervals satisfies the imaginary periodicity
condition, which is, moreover, equivalent to the symmetry
under z — z + if.

Conclusions.—Exploiting a previously unnoticed sym-
metry of the Wightman function, we have been able to
analyze in a general and systematic way the conditions that
guarantee the appearance of the Unruh effect, understood
as the thermal response of Unruh-DeWitt detectors. Our
analysis settles the practical issue of determining whether
or not a particular deformation of a QFT preserves the
Unruh effect, providing the necessary tools to answer this
question in a wide range of scenarios. As an application of
our formalism, we have provided explicit examples in
which the KMS condition is violated in different ways,
while the response of a detector in the adiabatic limit still
displays a thermal behavior. Thus, in these scenarios, no
adiabatic thermalization experiment will find any contra-
diction with the Unruh effect even if the pullback of the
vacuum two-point function is not KMS.
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