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The growth, form, and division of prebiotic vesicles, membraneous bags of fluid of varying components
and shapes is hypothesized to have served as the substrate for the origin of life. The dynamics of these out-
of-equilibrium structures is controlled by physicochemical processes that include the intercalation of
amphiphiles into the membrane, fluid flow across the membrane, and elastic deformations of the
membrane. To understand prebiotic vesicular forms and their dynamics, we construct a minimal model that
couples membrane growth, deformation, and fluid permeation, ultimately couched in terms of two
dimensionless parameters that characterize the relative rate of membrane growth and the membrane
permeability. Numerical simulations show that our model captures the morphological diversity seen in
extant precursor mimics of cellular life, and might provide simple guidelines for the synthesis of these
complex shapes from simple ingredients.
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It is likely that the first cells originated when a self-
replicating biomolecule was separated from its environ-
ment by a permeable membrane barrier and both the
biomolecule and the membrane were able to grow and
replicate. Physical compartmentalization allowed for a
separation of chemical environments, making way even-
tually for the specialization and competition between cells
that is the basis for Darwinian evolution [1,2]. How these
prebiotic cells could grow and divide without the complex
machinery in extant cells remains a major open question in
biology. Given the strong chemical and physical constraints
on biomolecular replication, and membrane compartmen-
talization, growth, and dynamics, it is natural to expect that
physicochemical processes are intimately tied to the evolv-
ability of such states. Recent research on the ability of a
biomolecule to replicate and transmit information has led to
a consensus on a range of possible chemical replicators [3].
Independently, the physical properties of the external
membrane barrier under growth and division have also
been the subject of experimental studies [4,5]. However, the
phase space of physical solutions for the growth and form
of the prebiotic vesicles is difficult to grapple with owing
to the range of spatiotemporal processes that need to be
accounted for—from membrane growth and deformation
to fluid permeation and ultimately division. Insight into the
dynamics of membrane growth and replication may be
gleaned by considering artificial lipid vesicles as well as

naturally occurring L-form bacteria. Synthetic lipid vesicles
composed of single-chain amphiphiles are considered to be
representative of prebiotic conditions [6], as are L-forms,
naturally occurring bacteria with genetic mutations that
inhibit cell wall formation [7]. Both these systems have
been experimentally shown to exhibit complex shapes and
modes of growth; they can grow while maintaining their
original spherical shape, by elongating into cigar shapes that
eventually divide into two vesicles of the same size [8–11]
[Fig. 1(a)], or by developing protrusions in the form of
external buds [9,12,13] [Fig. 1(b)], internal buds [10,12]
[Fig. 1(d)], or long tubes [4,9,12–14] [Fig. 1(c)]. It has been
suggested previously that growth and division may be
controlled solely by the physical processes at play
[5,15,16]. In particular, it is well established that deforma-
tions during growth involve dynamical imbalances in the
surface area to volume ratio, either due to excess membrane
growth or low permeability [13,17,18]. Our work builds on
existing theoretical studies of the equilibrium shapes of
vesicles [19–23] and out-of-equilibrium membrane growth
[24–29] by exploring the rangeof possible behaviorswithin a
nonequilibrium physical model that couples membrane
growth and fluid permeation.
Our minimal model of prebiotic vesicles assumes a

closed elastic surface of initial radius R0, spontaneous
curvature c0, bending stiffness B, and fluid permeability K,
with the membrane thickness being much smaller than the
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vesicle radius, which changes over time. We also assume
the membrane to be nearly inextensible, which translates
into a high energy cost for stretching, making bending
deformations energetically preferable. The vesicle is
assumed to be immersed in an incompressible fluid having
viscosity μ and at temperature T. We further assume that the
amphiphilic molecules that constitute the membrane are at
a constant concentration in the surrounding medium and
that they are incorporated into the membrane at an average
net rate of γ. At a continuum level, this implies that the
vesicle area A grows according to the simple law

_A ¼ γA: ð1Þ
Since lipids are incorporated into the external layer, we
assume that rapid transbilayer lipid exchange distributes
amphiphiles across the membrane and relaxes the bending
energy [30], and further that amphiphile species determine
the preferred spontaneous curvature [31]. We account for
the vesicle permeability, with changes in the vesicle volume
produced by transmembrane fluid flux according to

_V ¼ AKΔP; ð2Þ
where the pressure drop ΔP ¼ Pout − Pin, and K is the
membrane permeability. In this minimal model, we assume

that the pressure drop is dominated by the osmotic compo-
nent, which is kept constant by implicit internalmechanisms.
We note that these two equations are incompatible with
spherical vesicle growth, since they specify two laws for
radial expansion—one linear and another exponential.
Naturally, the slower of these is rate limiting, and this leads
to the complexity of shapes seen, as we will see shortly.
Since the size of the system (∼10 μm) is larger than the

scale over which thermodynamic fluctuations are relevant
(and B=kBT ∼ 10), we neglect the role of thermal fluctua-
tions. In terms of the five variables, the bending stiffness
(B), growth rate (γ), dynamic viscosity (μ), effective
permeability (KΔP), and spontaneous curvature (c0), we
construct three relevant length scales: the critical radius
Ri ¼ KΔP=γ, i.e., the radius below which vesicle growth is
dominated by volume increase and above which is domi-
nated by area growth, the mechanical relaxation length
scale Rx ¼ ðB=γμÞ1=3, the size below which bending
deformations are mechanically equilibrated, but above
which they are still dynamically varying, and the length
scale related to the spontaneous curvature c−10 . Using the
following values for the viscosity μ ¼ 0.8 × 10−3 kg=ms,
bending stiffness B ¼ 10 kBT ¼ 4 × 10−20 J [32], scaled
permeability KΔP ¼ 10−7 − 10−5 m=s [33–36], growth
rate γ ¼ 0.5 s−1 [6], and spontaneous curvature jc0j ¼
106–108 m−1 [37], we find that Ri ∼ ½10−7–10−5� m,
Rx ∼ ½5 × 10−8; 20 × 10−7� m. This allows us to define
two dimensionless parameters: Π1 ¼ Ri=Rx ∈ ½0.01; 1�,
which accounts for the ability of the vesicle to mechanically
equilibrate under imbalances arising from growth beyond
Ri, and Π2 ¼ Ric0 ∈ ½0.1; 100�, which determines the
relative magnitude of spontaneous vesicle curvature (noting
that it can be negative or positive). A small value of Π1

corresponds to a small critical radius and large relaxation
length scales: this is the limit of slow growth in which
vesicles evolve in a sequence of quasiequilibrated shapes.
On the other hand, large values of Π1 correspond to large
critical radii and small relaxation length scales which allow
only for local equilibration; this is the limit of nonequilibrium
growth. The subset of values we consider corresponds to
the regime of membrane-driven growth, which we reason
is likely when simple cellular precursors are unlikely to have
been able to sustain high osmotic pressures.
We use overdamped dynamics to model the vesicle as a

porous elastic membrane immersed in an incompressible
fluid. The elastic energy of the lipid bilayer is assumed to
be equal to the sum of the local stretching energy, the
Canham-Helfrich Hamiltonian [38,39], and a penalty term
that tethers the volume of the vesicle to the target volume
VT , which is typically growing. This yields the expression
for the energy

E ¼ ka
2

Z
S0
ðJ − 1Þ2da0 þ B

2

Z
S
ðH − c0Þ2da

þ kV
2
ðV − VTÞ2; ð3Þ

(b) (c) (d)

(e)

(a)

FIG. 1. (top) Different morphologies observed during growth in
synthetic giant vesicles and L-form bacteria: (a) symmetric
division, adapted from Ref. [11], (b) budding adapted from
Refs. [10,13], (c) tubulation adapted from Ref. [13], (d) vesicu-
lation adapted from Refs. [10,13] (Scale bars represent 3 μm).
Our minimal model leads to shapes that are similar to those
observed experimentally, using the following dimensionless
parameters: (a) Π1 ¼ 0.01, Π2 ¼ 2.5, (b) Π1 ¼ 0.15, Π2 ¼ 5,
(c) Π1 ¼ 0.02, Π2 ¼ 5, and (d) Π1 ¼ 0.15, Π2 ¼ −2.5 (see text
for details). (e) A schematic of our vesicle model that uses a 3D
triangulated lattice with bending rigidity B immersed in a fluid
with viscosity μ, with area that grows with homogeneous
expansion of the triangle size at a rate γ and volume whose
evolution is controlled by the wall permeability K.
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where ka is the stretching coefficient, B is the bending
modulus, H is the sum of the principal curvatures, c0 is the
spontaneous curvature, and kV is a volume-preserving
penalty parameter. In the above integrals, da0 is the area
element in the reference surface S0, da is the area element in
the deformed configuration S, and the term J that appears
in the stretching energy is the Jacobian of the trans-
formation from reference coordinates to deformed coor-
dinates. The reference surface, i.e., the equilibrium state, is
assumed to be a sphere, with the stretching term penalizing
local changes in area relative to the reference configuration
following Eq. (1), while the target volume follows Eq. (2).
In our simulations, the membrane is represented as a
triangulated lattice that undergoes growth and deformation
[Fig. 1(e)], with vertices following Brownian dynamics in
the presence of forces driven by the Hamiltonian above. To
avoid numerical instabilities, the surface is remeshed
periodically and the effective temperature is kept very
small to ensure robustness with respect to mesh size and
shape changes, and small fluctuations (see Supplemental
Material [40] for further details).
We simulated vesicular growth using this model after

initializing the vesicles as spheres with initial radius R0 ¼
2Ri over the range Π1 ¼ 0.01–0.5 and Π2 ¼ −2.5–5 by
varying the growth rate, permeability, bending stiffness,
and viscosity. First we study the shape evolution during
growth as a function of Π1 for vesicles with zero sponta-
neous curvature (Π2 ¼ 0 corresponding to the intermediate
row of Fig. 2). In all our simulations reported in the Letter,
we have chosen the stretching coefficient ka to be suffi-
ciently large so that bending, rather than in-plane stretch-
ing, is the preferred mode of deformation. We find a

transition that occurs continuously around Π1 ¼ 0.15 with
shapes showing increasingly high-order symmetries.
Values of Π1 below this transition correspond to quasie-
quilibrum shapes that continuously relax while the reduced
volume decreases during growth [Fig. 3(a)]. Values of Π1

above the transition correspond to nonequilibrated con-
figurations in which surface growth is faster than the
timescale for mechanical relaxation, so that the vesicle
incorporates new material by corrugating its surface at the
cost of increased elastic energy.
For the case of zero spontaneous curvature (Π2 ¼ 0),

there is an energy barrier for neck formation that prevents
budding or sprouting. Consequently, in the quasiequili-
brated case the growing surface area can only be accom-
modated by the formation of vesicle-scale, pancakelike
geometries. The most general way to form necks and thus
take the simplest route to cell division, is by introducing a
nonzero spontaneous curvature. Indeed, for fixed nonzero
spontaneous curvature, with Π2 ≠ 0, we see the emergence
of two different behaviors depending on the sign of the
spontaneous curvature. Positive spontaneous curvatures
give rise to tube formation and budding. Consistent with

FIG. 2. Morphospace of vesicle shapes as a function of the
dimensionless mechanical relaxation Π1 and the dimensionless
spontaneous curvature Π2. For Π2 ¼ −2.5 the shapes also
visualize the interior of the vesicles where vesiculation occurs.
Configurations correspond to vesicle shapes immediately prior to
division or fission, with snapshots of the vesicle just before a
topological transition associated with fission.

FIG. 3. Scaled elastic energy and vesicle shapes as a function
of scaled time for two different modes of growth. (Top) When
Π1 ¼ 0.05 and Π2 ¼ 2.5, the formation of a skinny neck between
symmetric lobes provides a likely mechanism of homeostatic
division in three dimensions. The slow growth allows the vesicle
to deform through quasiequilibrated shapes with roughly constant
elastic energy, and with a drop in the energy corresponding to
neck formation. (Bottom) When Π1 ¼ 0.25 and Π2 ¼ −2.5, fast
surface growth and negative curvature lead to multiple sites of
inward vesiculation. The buildup in elastic energy is a signature
of fast nonequilibrated growth. The shapes along the curve also
show the interior of the vesicles.
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the observations for Π2 ¼ 0, we observe quasiequilibrium
shapes at small values of Π1 in which a tube sprouts from
the main body of the vesicle. As Π1 is increased, tube
formation is replaced by single budding events. At large
values of Π1, several budding sites emerge on the vesicle
surface. Finally, negative spontaneous curvature corre-
sponds to shapes with inner tubulation (small Π1) and
inner vesiculation [largeΠ1, Fig. 3(b)]. In the Supplemental
Material [40], we investigate the case of low ka in which
surface stretching becomes energetically preferable and
find that rather than tube sprouting, a neck appears in the
narrowest section of a pear-shaped vesicle (Supplemental
Material [40]. Figure S1).
Large values of Π1 correspond to the cases of high

permeability and rapid growth, in which both vesicle
volume and surface area grow faster than the timescale
for mechanical relaxation, resulting in a buildup of elastic
energy [Fig. 3(b)]. The vesicle grows spherically until
volume growth cannot keep up with surface growth, at
which point patches of constantmean curvaturewith jcj ∼ c0
appear throughout the surface to relax the bending energy.
Further surface growth results in the accumulation of extra
material in those patches, which subsequently become
nucleation sites for budding or vesiculation.
Although we stop our simulations prior to vesicle fusion

or division given the geometric and biophysical complexity
of the topological transition associated with division in
three dimensions, we can explore this process in the case of
two dimensions (relevant for vesicles that are confined
between solid surfaces) and also study the formation of thin
necks Fig. 3(a), since this might lead to division sponta-
neously due to thermal fluctuations. Our qualitative explo-
ration shown in Fig. 2 reveals various behaviors: we find
vesicles approaching symmetric division with very small
dispersion in size, and vesicles that develop small internal
or external buds that might also be precursors to division.
In this context, it is important to note that the initial radius
influences the shape of the vesicles during growth.
Assuming a spherical configuration and setting the radius
change from the area and volume growth equations equal to
each other, one may compute Rc ¼ 2KΔP=γ ¼ 2Ri to be
the radius at which volume growth cannot keep up with
surface growth and the vesicle begins to deviate from a
spherical shape. Whereas the above results were obtained
using an initial vesicle radius of R0 ¼ Rc, if R0 < Ri, there
is a preliminary stage in which the vesicle grows spherically
until reaching the critical radius Rc before the deformations
discussed above occur.WhenR0 > Rc however, area growth
is initially much faster than volume growth and the surface
undergoes corrugations at lower valuesofΠ1; for largevalues
of R0, daughter vesicles will effectively bud off, reducing
the radius of the mother vesicle until it reaches Rc.
Simulations in 2D systems (see Supplemental Material

[40]), show very similar features that map onto the
morphospace of Fig. 2, in the sense that vesicles will

exhibit the morphologies of Fig. 2 immediately prior to
division. Furthermore, in the 2D systems, we can capture
the topological transitions associated with division easily
and thus simulate multiple generations (see Ref. [40]).
Vesicles that grow into cigar shapes display accurate size
control when the permeability and growth rate are such
that both the perimeter and area double simultaneously
(Supplemental Material [40], Fig. S5), leading to a periodic
steady state.
To assess the validity of our assumption of local

hydrodynamics, we used the immersed boundary method
[51] to model the nonlocal hydrodynamics and solved
fthe fully coupled elastohydrodynamic problem (see the
Supplemental Material [40]). While our results are quali-
tatively consistent with the simpler local hydrodynamic
approximation used so far, accounting for nonlocal hydro-
dynamics increases the characteristic length scales of
membrane tubules and invaginations and lowers the
energy barrier for the formation of creases and folds
(see Supplemental Material [40]).
Overall, our study of nonequilibrium vesicle growth and

division allows us to investigate the role of permeability,
stiffness, viscosity, and growth rate via two dimensionless
parameters that define a two-dimensional morphospace.
Our simulations reveal that many of the essential aspects of
growth and dynamics can be understood in terms of an
imbalance between surface to volume growth and the
relative rate of mechanical relaxation. Our morphospace
allows us to recapitulate the various observed shapes of
simple dynamically growing lipid vesicles and their
approximate biological analogs, L-forms [8–12], and
allows us to evaluate whether the varied morphodynamics
of prebiotic vesicles and their modern counterparts could
arise from nonequilibrium physicochemical processes. Our
minimal model provides a foundation to study the physico-
chemical constraints on protocellular growth and replica-
tion while setting the stage to include the additional
complexity associated with the dynamics of transbilayer
lipid exchange and natural curvature, internal sources of
lipids, concentration differences across the membrane, and
the role of multiple bilayers.
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