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In micellar surfactant solutions, changes in the total number of micelles are rare events that can occur by
either of two mechanisms—by stepwise association and dissociation via insertion and expulsion of
individual molecules or by fission and fusion of entire micelles. Molecular dynamics simulations are used
here to estimate rates of these competing mechanisms in a simple model of block copolymer micelles in
homopolymer solvent. This model exhibits a crossover with increasing degree of repulsion between solvent
and micelle core components, from a regime dominated by association and dissociation to a regime
dominated by fission and fusion.
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Spherical micelles are simple self-assembled structures
that form in solutions of both small molecule and macro-
molecular surfactants [1,2]. Micelles are also the building
blocks of a variety of complex phases of sphere-forming
diblock copolymers [3–6]. The slowest dynamical proc-
esses in micellar systems are generally those that involve a
change in the total number of micelles. Understanding of
these slow processes is critical to understanding of appli-
cations that rely on adsorption of surfactant to an interface,
such as wetting, emulsification, and foaming [1,2], because
the rate of adsorption is closely related to the rate at which
micelles can break down near an interface [7]. Analogous
processes also appear to play a crucial role in phase trans-
formations and equilibration in melts of sphere-forming
block copolymers [5,6].
Experiments in which equilibrium of a micellar solution

is disturbed by a small change in temperature, pressure,
or concentration have demonstrated the existence of two
dynamical processes with disparate timescales: a “fast”
process with a typical relaxation time τ1 of microseconds or
less and a “slow” process with a much longer relaxation
time τ2 [8–14]. The fast process is one in which micelles
grow or shrink slightly via insertion or expulsion of
individual free molecules, without changing the number
of micelles. The slow process instead involves a change in
the total number of micelles [11–14].
The mechanism of the fast process is well understood,

but the mechanism of the slow process has remained
unclear. The slow process in an equilibrated solution could
occur primarily either by association and dissociation or by
fission and fusion [14]. In the association-dissociation
mechanism, a new micelle can occasionally form by
aggregation of dissolved free surfactant molecules, or
disappear by dissociation into free molecules. In the
fission-fusion mechanism, the number of micelles can
instead increase by one when a micelle undergoes fission

or decrease by one when two micelles undergo fusion.
Several techniques can be used to measure the rate of the
slow processes, but it is more difficult to devise experi-
ments that can distinguish these two mechanisms.
The best developed theory of micelle kinetics is the

stepwise-growth theory [11]. This theory assumes that both
fast and slow processes arise from strictly stepwise changes
in micelle size, by insertion and expulsion of individual
free molecules, and that rates of fission and fusion are
negligible. The resulting theory [11–20] is closely analo-
gous to the classical Becker-Döring theory of stepwise
nucleation of liquid from a vapor [21].
Theories that allow for fission and fusion processes are

much less well developed. Several authors have formulated
population models that allow for micelle fission and fusion
as well as stepwise processes [22–26]. Such models have,
however, thus far relied on estimates of the rate constants
for fission and fusion that either assume that fusion is
diffusion limited or that mimic the effects of a barrier to
fusion via the introduction of an adjustable parameter.
The predictive power of such models has thus been limited
primarily by our limited understanding of the magnitude of
barriers to fission and fusion.
Spontaneous creation and destruction of micelles in an

equilibrated micellar solution generally occur too infre-
quently to be observed in straightforward molecular
dynamics (MD) simulations. Simulation studies of kinetics
have thus far focused instead on the comparatively rapid
initial formation of micelles from a supersaturated solution
[27], and on exchange of individual molecules [28]. Here,
we combine MD simulation and population modeling to
estimate and compare equilibrium rates of the competing
association-dissociation and fission-fusion processes for a
simple simulation model of a nonionic block copolymer
surfactant and improve upon prior diffusion limited esti-
mates. To do so, we analyze the behavior of a micelle
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population model using model parameters extracted from
molecular simulations. Many details of the simulations and
analysis presented here are discussed in two related longer
papers [29,30].
Population model.—We consider a dilute micellar sol-

ution in which micelles coexist with a concentration c1 of
free surfactant molecules. Let cnðtÞ denote the concen-
tration of micelles that contain n surfactants at time t. The
equilibrium concentration of such micelles, denoted by c�n,
is given by a Boltzmann distribution c�n ∝ expð−Wn=kBTÞ,
where Wn is the free energy required to form a micelle of
aggregation number n from a reservoir of free surfactants.
The free energy Wn characteristically has a local minimum
at some value ne, which is the most probable micelle
aggregation number.
We consider a general dynamical model that allows for

both stepwise insertion and expulsion and fission and
fusion. Fusion of clusters of aggregation number n and
n0 to form a cluster of size nþ n0 is assumed to occur at a
rate rþn;n0 ¼ kþn;n0cncn0 per unit volume. Fission of an
aggregate of size nþ n0 into daughters of size n and n0
occurs at a rate r−n;n0 ¼ k−n;n0cnþn0 . Stepwise insertion and
expulsion of individual molecules is treated as a special
case in which n or n0 is equal to 1. The time dependence of
cnðtÞ is controlled by a master equation,

dcn
dt

¼
Xn=2

n0¼1

Jn−n0;n0 −
X∞

n0¼1

νn;n0Jn;n0 ; ð1Þ

where Jn;n0 ¼ rþn;n0 − r−n;n0 . Here, νn;n0 ¼ 1þ δn;n0 is a coef-
ficient giving the number of clusters of a size n consumed
by fusion of clusters of size n and n0. Detailed balance
requires that Jn;n0 ¼ 0 for all n and n0, implying that
kþn;n0c

�
nc�n0 ¼ k−n;n0c

�
nþn0 . The independent input parameters

required by this model are thus the equilibrium concen-
trations or cluster free energies Wn for all n, and the rate
constants kþn;n0 or k

−
n;n0, which are related by detailed balance.

The simpler stepwise model only requires values for the
insertion rate constant kþn;1 or the expulsion constant k−n;1.
Simulation model.—We have analyzed a simple simu-

lation model of nonionic diblock copolymer surfactants in a
polymer solvent [31–34]. Each copolymer is a chain of 32
beads, with 4 B beads and 28 A beads. Each “solvent”
molecule is a homopolymer of 32 A beads. Pairs of i and j
beads separated by a distance r less than a cutoff σ interact
via a pair potential UpairðrÞ ¼ 1

2
ϵijð1 − r=σÞ2, with ϵAA ¼

ϵBB ¼ 25kBT and ϵAB ≥ ϵAA. Bonded beads also interact
via a potential Ubond ¼ κr2=2, with κ ¼ 3.048kBT=σ2.
Simulations were performed at constant temperature kBT ¼
1 and pressure P ¼ 20.249kBT=σ3, giving an average bead
concentration c ≃ 3σ−3 [32,33]. Simulations were per-
formed at several values of a parameter α≡ ðϵAB −
ϵAAÞ=kBT that controls the driving force for micellization.

Well-defined micelles form only for α > 8. Extensive
simulations were performed at α ¼ 10, 12, 14, and 16.
Different types of simulation were performed to estimate
different parameters.
Equilibrium properties.—Thermal equilibrium proper-

ties were obtained from hybrid Monte Carlo (MC) simu-
lations that were performed in a semigrand ensemble in
which the number of copolymer molecules fluctuates but
the total number of copolymer and solvent chains remains
constant [35]. These simulations use a MC move that can
convert molecules of one type into the other by toggling the
bead type of the 4 beads that form the minority block of a
copolymer molecule. This allows very efficient sampling
when both species are polymers of the same length, which
is why we chose to study such a system. These simulations
also used a hybrid MC-MD move in which short MD
simulations are used as proposed MC moves [36]. We
suppress the creation of states with more than one micelle
in the simulation by rejecting all MC moves that produce
such states [29].
The acceptance criteria for MC moves is designed to

sample the Boltzmann distribution for a system with a
modified potential energy U0 ¼ U − VðNÞ, in which U is
the physical potential energy and VðNÞ is an umbrella
potential that depends only on the total number of copol-
ymers in the simulation cell, which we denote by N.
The potential VðNÞ is chosen adaptively to obtain a nearly
flat probability distribution PsimðNÞ for N. The Gibbs free
energy GðNÞ for the system is then given by GðNÞ ¼
−kBT lnPsimðNÞ þ VðNÞ. Results of these biased simula-
tions are then used to reconstruct properties that would be
obtained in a semigrand canonical ensemble describing a
system that can exchange molecules with a reservoir of a
specified exchange chemical potential Δμ, which is the
difference between the copolymer and hompolymer chemi-
cal potential.
We define the critical micelle concentration cc to be the

average free molecule concentration c1 in a state in which
the average number of free molecules is equal to the
number of molecules in micelles, or in which the total
concentration c is twice c1. Let Δμc denote the value of
Δμ in this state. The mole fraction of free copolymers in
this state, denoted by ϕc, decreases exponentially with α,
and is found to be ϕc ¼ 0.0163, 0.0054, 0.0017, 0.00072
for α ¼ 10, 12, 14, 16, respectively.
Values of the cluster formation free energyWn have been

extracted from measurements of the frequency of appear-
ance of cluster of each size in a semigrand canonical
ensemble [29]. The most probable aggregation number ne
is the value at which Wn is at a local minimum, for which
we obtain ne ≃ 55, 70, 83, and 97 for α ¼ 10, 12, 14, and 16.
Figure 1 shows the calculated values of free energyWn as a
function of n at Δμ ¼ Δμc. The local maximum in Wn, at
a value of n denoted by nt, is the transition state for stepwise
dissociation or association. The barrier to dissociation,
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denoted by ΔWd ¼ Wnt −Wne, increases from 3 to 14kBT
over this range of α values.
Molecular insertion and expulsion rates.—The rate

constants kþn;1 and k−n;1 for copolymer insertion and expul-
sion were measured for micelles of varying size in MD
simulations of systems that contain a single micelle in
coexistence with a few free copolymer molecules, by
directly measuring the rates at which copolymers enter
and leave the micelle [30].
Equilibrium dissociation lifetime.—Given estimates of

Wn and the insertion rate constant kþn;1, it is straightforward
to compute the average time required for an existing
micelle to undergo dissociation via purely stepwise proc-
esses. We call this time the equilibrium dissociation lifetime,
denoted by τd. Values of τd have been computed for each
value ofα atΔμ ¼ Δμc by amethod closely analogous to that
used to computenucleation rates in theBecker-Döring theory
of stepwise vapor phase nucleation [30].
Intrinsic fission lifetimes.—Preliminary MD simulations

of preassembled micelles of varying size showed that
micelles with sizes somewhat larger than ne spontaneously
fission frequently enough to be observed in long MD
simulations, with an average lifetime that decreases rapidly
with increasing n. The fact that the fission lifetime
decreases rapidly with increasing n suggests a picture of
fission as a two-step process in which fission typically
occurs via a rare fluctuation of n to a value greater than ne
via stepwise insertion, followed by fission of the enlarged,
less stable micelle. This picture suggested that a study of
fission in enlarged micelles, with n > ne, might allow us to
estimate the overall rate.
To quantify fission rates, MD simulations of individual

preassembled micelles were performed for each value of
α ¼ 10–16 with several values of n. For each choice of
values for α and N, independent MD simulations were
performed for many equivalent systems, each containing
one micelle. The times at which all fission events occurred
were recorded, and the resulting set of times was used to

estimate an intrinsic fission lifetime for a micelle of known
size n, which we denote by τfisn [30].
Figure 2 shows the resulting estimates of ln τfisn versus n

for α ¼ 10, 12, 14, and 16. The value of n in this plot is the
average number of copolymers in the micelle just prior to
fission. For each value of α, ln τfisn is found to depend nearly
linearly on n, with similar slopes for different values of α.
The dependence of ln τfisn upon both n and α is found to be
well described over this range as a linear function of both n
and α, of the form

ln τfisn ðαÞ ¼ Aþ Bαþ Cn; ð2Þ

with A ¼ 10.855, B ¼ 2.0984, and C ¼ −0.1877.
Equilibrium fission lifetime.—Given estimates of Wn

and τfisn as functions of n, we can compute the time it would
take a randomly chosen micelle to undergo fission, in the
absence of stepwise dissociation. We call this the equilib-
rium fission lifetime, denoted by τf. The corresponding rate
1=τf is given by

1

τf
¼

X

n

Pn
1

τfisn
; ð3Þ

where Pn ∝ e−Wn=kBT is the probability that a randomly
chosen micelle has size n. We have computed τf at Δμ ¼
Δμc at each value of α using MC results for Pn and using
Eq. (2) to approximate the dependence of τfisn on n.
In Ref. [30], for comparison, we also analyze a sim-

plified theory that is based on the assumption that fusion is
diffusion limited. Because predicted fusion and fission rates
are related by detailed balance, this assumption can be used
to compute corresponding predictions for τfisn . Within the
range of values of n in which we were able to measure τfisn ,
measured values for τfisn exceed those predicted by this
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FIG. 1. Micelle free energy W plotted versus micelle aggre-
gation number n at Δμ ¼ Δμc. Results are shown for α ¼ 10, 12,
14, and 16, from lowest to highest free energy barrier. Results are
shifted so that Wn ¼ 0 at the micellar minimum, n ¼ ne.
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FIG. 2. Semilog plot of the intrinsic fission lifetime τfisn in units
of Lennard-Jones time as a function of micelle aggregation
number n, for values of α ¼ 10, 12, 14, and 16 (left to right).
Error bars show root-mean-squared statistical errors. Solid lines
are predictions of the global fit to Eq. (2), plotted at these four
values of α.

PHYSICAL REVIEW LETTERS 123, 038003 (2019)

038003-3



model by factors of 103 or greater, confirming the existence
of a substantial barrier to fusion.
Figure 3 shows a comparison of the resulting predictions

for the lifetime τd for stepwise dissociation (diamonds) and
two different estimates of the lifetime τf for fission (circles
and squares) at α ¼ 10, 12, 14, and 16 and Δμ ¼ Δμc.
The predicted dissociation lifetime τd increases much more
rapidly with increasing α than τf. As a result, we find that
association and dissociation occur much more frequently
than fission and fusion for low values of α, α < 14, but that
fission and fusion dominate at the highest value, α ¼ 16.
The estimate of τf shown by squares in Fig. 3 was

obtained by using Eq. (2) for τfisn to extrapolate our results
to values of n somewhat below the range over which we
actually measured τfisn . To check whether our main con-
clusion is sensitive to this extrapolation, we have also
considered a model in which fission is artificially sup-
pressed outside the range of values of n in which τfisn was
measured. To do this, we set τfisn ¼ ∞ for all values of n for
which Eq. (2) yields τfisn greater than 5 × 106 Lennard-Jones
time units, which is near the upper limit of values that we
could measure. Because this model intentionally ignores
the vast majority of expected fission events, most of which
involve somewhat smaller micelles [29], it yields an
approximate upper bound on τf. For α ¼ 16, the resulting
bound on τf (open circles) is almost 2 orders of magnitude
greater than the estimate obtained by extrapolating, but still
yields τf ≪ τd. The conclusion that fission and fusion
dominate at α ≥ 16 thus appears to be robust.
Our analysis thus predicts a crossover with increasing α

(i.e., increasing AB repulsion) from a regime in which
micelle birth and death occur predominantly by stepwise
association and dissociation to a regime of higher α in
which fission and fusion dominate. This crossover occurs
because τd increases much more rapidly than τf with
increasing α. Note that τd increases by 6 orders of

magnitude over the range shown in Fig. 3, while τf appears
to increase by 2–4 orders of magnitude. The theory of
stepwise dissociation [11,15–17] predicts a dissociation
rate τ−1d ∼ k−nt;1 expð−ΔWd=kBTÞ in which ΔWd is the
barrier to dissociation, corresponding to the difference
between minimum and maximum values of Wn in
Fig. 1. The value of the elementary rate k−nt;1 ≃ kþnt;1c1 in
a system with c1 ¼ cc varies with α nearly proportionately
to cc, which decreases by a factor of 20 over this range.
The more important factor in the increase in τd is the
increase in the Arrhenius factor expð−ΔWd=kBTÞ, which
decreases by a factor of nearly 105 as a result of the increase
in the barrier ΔWd. The magnitude of the increase in τd
is not surprising in light of previous predictions for
polymeric micelles [15,16]. What we find more surprising
is how much less τf changes with α.
Since the seminal work of Aniansson and Wall [11],

most detailed theoretical analyses of micelle kinetics have
assumed the validity of the stepwise growth mechanism
for the slow process [11–13,15–19,37], thus dismissing the
possibility of fission and fusion. Here, we have combined
several simulation and analysis techniques to construct the
first quantitative comparison of rates for these competing
mechanisms for a simple simulation model of block
copolymer micelles. The results show the existence of a
crossover with increasing degree of repulsion between
unlike components (corresponding to increasing interfa-
cial tension and decreasing solubility) from a weakly
immiscible regime in which micelles are created and
destroyed primarily by stepwise association and dissoci-
ation to a strongly immiscible regime in which fission and
fusion dominate. Most block copolymer systems pre-
sumbably lie in the strongly immiscible regime. This
conclusions is consistent with the conclusions of several
authors who have argued for the relevance of fission and
fusion in solutions of relatively insoluble nonionic sur-
factants [14,17,23,38,39] and ionic surfactants at high salt
concentrations [14,40,41] on the basis of analyses of the
concentration dependence [14,38,40] and absolute mag-
nitude [17,23,39] of the slow relaxation time τ2. Our
results are not consistent with the predictions of Halperin
and Alexander [37], who considered strongly immiscible
block copolymers micelles and predicted that fission and
fusion would be irrelevant in this limit. Further simulation
and theoretical work is clearly needed to determine the
generality of our conclusions and to study the mecha-
nisms and barriers for fission and fusion. We hope that
this work inspires renewed experimental and theoretical
interest in this prototypical example of a slow dynamical
process in soft matter.
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FIG. 3. Predicted values of the dissociation lifetime τd (blue
diamonds) and fission lifetime τf plotted versus α ¼ ðαAB − αAAÞ=
kBT, for α ¼ 10, 12, 14, and 16. Squares are estimates of τf
computed using Eq. (2) for all values of n, while circles are an
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occur in the range τfisn for which the intrinsic lifetime was directly
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