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Optical tweezers microrheology (OTM) offers a powerful approach to probe the nonlinear response of
complex soft matter systems, such as networks of entangled polymers, over wide-ranging spatiotemporal
scales. OTM can also uniquely characterize the microstructural dynamics that lead to the intriguing
nonlinear rheological properties that these systems exhibit. However, the strain in OTM measurements,
applied by optically forcing a microprobe through the material, induces network inhomogeneities in and
around the strain path, and the resultant flow field complicates the measured response of the system.
Through a robust set of custom-designed OTM protocols, coupled with modeling and analytical
calculations, we characterize the time-varying inhomogeneity fields induced by OTM measurements.
We show that homogenization following strain does not interfere with the intrinsic stress relaxation
dynamics of the system, rather it manifests as an independent component in the stress decay, even in highly
nonlinear regimes such as with the microrheological large-amplitude-oscillatory-shear (MLAOS) protocols
we introduce. Our specific results show that Rouse-like elastic retraction, rather than disentanglement and
disengagement, dominates the nonlinear stress relaxation of entangled polymers at micro- and mesoscales.
Thus, our study opens up possibilities of performing precision nonlinear microrheological measurements,
such as MLAOS, on a wide range of complex macromolecular systems.
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Complex fluids and soft materials, such as networks of
entangled polymers, have been widely studied over the past
several decades due to the intriguing physics they exhibit—
especially in response to stress or strain. Entangled poly-
mers have been of particular recent interest as the Nobel
Prize winning theory to describe their dynamics, de
Gennes’ reptation model, falls short of accurately describ-
ing their stress response in the nonlinear regime or when
subject to nonuniform flow fields. Entangled polymer
systems are also ideal candidates for designing multifunc-
tional materials, as they display intriguing scale-dependent
viscoelastic properties that can be precisely tuned by the
concentrations, sizes, and topologies of the constituent
polymers [1–6].
Microrheology, which can probe viscoelasticity over

length scales from the network mesh size to larger than
the size of the constituent polymers, offers a valuable
approach to study these complex systems [7–10]. In
particular, active microrheology methods, such as using
optical tweezers to drive a microsphere through a material
with user-controlled rates and distances [11–18], provides
access to the microscopic origin of nonlinear properties
[12–15,17,18] and strain-induced rearrangements of net-
work microstructures [16–18]. However, the flow field
produced in these experiments is much more complex than
analogous bulk rheology measurements and can lead
to transient local inhomogeneities [9,12,19–21], which

complicate accurate evaluation of rheological properties.
The potential for inhomogeneities can become prohibi-
tively large in nonlinear regimes, where the physics is the
most intriguing and least understood [1,5,17,20,22–24].
These issues further pose a major obstacle to implementing
a microrheological analog of large-amplitude-oscillatory-
shear (LAOS) measurements that have been proven
extremely effective in elucidating the nonlinear response
of polymer systems [25–30].
Thus, while optical tweezers microrheology (OTM)

offers a promising route for probing rheological properties
of entangled polymers and other soft materials, there has
yet to be an accurate theoretical description of the resulting
local inhomogeneities, much less a straightforward proto-
col for incorporating the details of the time-dependent flow
field into analysis of rheological parameters. Previous
theoretical studies have been limited to near-linear regime
perturbations, and did not describe post-strain homogeni-
zation dynamics nor decouple this effect from the intrinsic
relaxation of the system [12,19].
Here, we present a novel OTM protocol, supported by a

theoretical framework, to elucidate the effect of strain-
induced local inhomogeneities in polymeric materials. We
use entangled DNA as a model system [31,32] and perform
microrheological-LAOS (MLAOS) and single-strain
OTM measurements. We measure the temporal variation
of the inhomogeneity field and couple it to the time-varying
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osmotic pressure experienced by the microbead, such
that we decompose the contributions of homogenization
dynamics and intrinsic stress relaxation to the experimen-
tally measured stress response. Using a simple Fickian
model we estimate the polymer concentration equilibration
dynamics, and in turn, its manifestation in stress decay.
We not only provide a complete description of the strain-
induced inhomogeneity and its effect on the measured
stress response, but we also introduce a valuable OTM
technique—MLAOS. Our results answer key questions
regarding how entangled polymers distribute local stress
and relax following nonlinear strain, and open the door for
straightforward analysis of a wide range of OTM measure-
ments to investigate the nonlinear response of soft matter
systems.
For both single-strain and MLAOS measurements

(Fig. 1, Supplemental Material [33]), we optically drag a
microprobe of radius a ¼ 2.25 μm through a 1 mg=ml
solution of 38 μm linear DNA at a constant strain rate _γ ¼
3v=

ffiffiffi
2

p
a ¼ 85 s−1 (seeSupplementalMaterial [33]) [17,32].

We simultaneously measure the resulting stress response of

the system σðtÞ ¼ FðtÞ=πa2 [17] via the force experienced
by the probe, FðtÞ ¼ kΔxðtÞ, where ΔxðtÞ is the displace-
ment of the bead from the trap center and k is the trap
constant. For single-strain experiments, we drag the probe
through six different strain path lengthsLSP corresponding to
maximum strains (γmax ¼ 3LSP=

ffiffiffi
2

p
a) of 9.4 to 37.7 [19],

after which we halt bead motion (Supplemental Material
[33], Figs. 1,2). For MLAOS experiments, we oscillate the
probe through the same strain path for 10 cycles. We vary
the oscillation amplitude LSP and wait time before retracing
the path Δtw to achieve oscillation periods Δt of 0.44, 0.89,
and 1.49 s (Supplemental Material [33], Figs. 1,3). As
demonstrated in Supplemental Material Fig. S1, the chosen
strain parameters are sufficient to induce nonlinear response.
The probe is much larger than the tube diameter

(dT ≈ 680 nm) and mesh size (ξ ≈ 140 nm) of the system
[31,32,34,35], and _γ is well above the intrinsic relaxation
rates τ−1R and τ−1D , where τR ≈ 0.6 s is the Rouse time
associated with elastic retraction of polymer coils and
τD ≈ 40 s is the disengagement time over which an
entangled polymer reptates out of its confining entangle-
ment tube (see Supplemental Material [33]) [32,36].
Thus, as the probe moves through the network, it drags
DNA along with it, creating a local density inhomogeneity.
The inhomogeneity field can be described by a “build-up”
region with higher density of entanglement segments in
front of the probe, and a lower density “depletion” zone in
the strain path [Fig. 1(b)]. Upon cessation of the stage
motion, the Stokes’ drag force Fd ¼ 6πηav (primarily
responsible for the displacement ΔxðtÞ of the probe)
vanishes, and the probe returns to the trap center by
moving through the build-up region as the system equil-
ibrates [Figs. 1(b), 2(a) inset]. This equilibration process is
governed by the relaxation dynamics of the polymers in the
build-up region, and manifested in the decay of ΔxðtÞ, or
σðtÞ ¼ kΔxðtÞ=ðπa2Þ [Fig. 2(a)].
As shown in Fig. 2 and the SupplementalMaterial Fig. S2

[33], σðtÞ curves for all γmax values fit well to a double-
exponential decay function, σðtÞ ¼ C1e−t=τ1 þ C2e−t=τ2 ,
demonstrating that two distinct processes contribute to
the stress relaxation. While the shorter relaxation time τ1
increases linearly with γmax, τ2 is independent of γmax
[Fig. 2(b) inset], with an average value of ∼0.6 s that
corresponds remarkably well to the predicted Rouse
time τR (Supplemental Material [33]) [32,36]. The agree-
ment of τ2 with τR, along with its independence from γmax,
indicates that this contribution to the relaxation arises from
intrinsic relaxation mechanisms available to the polymers.
Conversely, the linear increase of τ1 with γmax suggests that
this process is driven by equilibration of the local inhomo-
geneity, which should depend on the strain.
To estimate the stress decay due to equilibration of the

local inhomogeneity, we develop analytical calculations
based on a toy model that describes the relaxation of the
system following strain [Fig. 2(c)]. All model assumptions

FIG. 1. Schematic of OTM strain profiles (a) and resultant
microstrained state of entangled DNA (b). (a) Strain profiles
represent the path of the trapped bead relative to the sample. In
single-strain experiments (orange), the bead is dragged a distance
LSP at a constant rate _γ, after which motion is halted. In MLAOS
experiments (brown) a constant-rate oscillatory strain with period
Δt and wait-time Δtw is applied by repeatedly tracing the same
strain path along forward and backward directions. (b) As the
probe moves through the solution, DNA in the strain path
accumulates, creating a higher density build-up region in front
of the bead, and lower density depletion region behind it. At the
same time, Stokes’ drag displaces the bead from the trap center by
a distance Δx.
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and approximations are described and validated in the
Supplemental Material [33]. We treat the shape of the build-
up region as roughly cylindrical with length L and radius R.
L obtains an optimal value (dependent on _γ) and remains
unchanged for increasing γ, while the build-up region

grows cross sectionally (increasing R) as new polymers
are pushed into the region from the strain path. Therefore,
the continuity equation a2LSPc ¼ R2Lðc0bu − cÞ ≈ R2Lc0bu
describes the polymer concentration in the build-up region,
c0bu ð≫cÞ, immediately following the strain (t ¼ 0) in terms
of the bulk concentration c. Polymers in the build-up region
diffuse over time such that the average concentration cbuðtÞ
decays from cbu ¼ c0bu to cbu ¼ c as t → ∞. Diffusion
occurs mostly along the radial direction of the cylindrical
build-up region and can be described by Fick’s law
J ¼ −Dð∂cbu=∂rÞ ≈D½ðcbu − cÞ=R�, where D is the col-
lective diffusion coefficient of DNA in the bulk. While
the density gradient is continuous in the build-up
region, for simplicity we consider only the average
value cbu that changes to the bulk concentration c across
the boundary of the build-up region over a length scale
of order R. Thus, the rate of concentration decay in the
build-up region follows the differential equation
ðdcbu=dtÞ ≈ −ð2J=RÞ ≈ ð2D=R2Þðc − cbuÞ. The solution
of this equation, along with the boundary conditions, gives
cbuðtÞ∼cþðc0bu−cÞe−ð2Dt=R2Þ. Thus, the average polymer
concentration in the build-up region decays exponentially
with a characteristic timescale τ ∝ R2. For constant _γ
perturbations, R2 goes as LSP and hence τ varies propor-
tionally with LSP (and thus γmax). What remains to be
determined is how the time-varying concentration cbuðtÞ
relates to the measured stress σðtÞ.
At a finite time t due to the mismatch of concentrations

across the probe, it experiences an osmotic pressure force
fOSðtÞ that is proportional to cbuðtÞ, as the concentration in
the depletion region is negligible. Hence, the force equation
for the probe can be written as kΔxðtÞ þ 6πηaðdΔx=dtÞ þ
fosðtÞ þ feðtÞ ¼ 0, where fe is the elastic recovery force
exerted by the strained DNA. Assuming that the drag
coefficient (6πηa) does not change significantly with time
as the build-up region relaxes, the solution of the above
first-order differential equation can be given by ΔxðtÞ ¼
e−kt=6πηa

R
dt0½fosðt0Þ þ feðt0Þ�ekt0=6πηa. As shown in the

previous paragraph, the homogenization dynamics leads
to exponential decay of cbuðtÞ, and in turn fosðtÞ, with a
relaxation time τ that increases linearly with LSP [recall
cbuðtÞ ∼ cþ ðc0bu − cÞe−2Dt=R2

and R2 ∼ LSP]. The force
feðtÞ also decays exponentially with a characteristic time
intrinsic to the system. The only intrinsic relaxation time
manifested through our suite of measurements is the Rouse
time, τR (see Supplemental Material [33], Fig. S3). Hence
the decay in feðtÞ should follow the same timescale τR.
Since the time dependence of both force terms in the
above equation are exponential, the integration can be done
easily to get ΔxðtÞ ¼ Ae−t=τ þ Be−t=τR , where A and B are
constants. Thus, ΔxðtÞ and, consequently, σðtÞ follows
double-exponential decay with characteristic timescales
of τ (similar to τ2), and τR ð≈τ1Þ as is manifested in
our experiments.

FIG. 2. Stress relaxation of entangled DNA is mediated by
Rouse-like elastic retraction coupled with homogenization of
nonuniform concentration profiles. (a) Sample applied strain γðtÞ
(orange line, right axis) and measured stress response σðtÞ (brown
line, left axis) versus time t. The stress relaxation at constant strain
γmax is fit to a double-exponential decay (gray line). Data shown is
for γmax ¼ 37.7. Inset: Bead motion through the build-up region
towards the trap center as the system relaxes. (b) σðtÞ curves for γmax
values of 9.4 (pink), 18.9 (orange), 23.6 (olive), 28.3 (magenta),
33.0 (cyan), and 37.7 (green), all fit to double-exponential decays
with decay times τ1 and τ2 (black lines). Inset: τ1 and τ2 (color-
coded circles and squares with error bars), versus γmax with linear
fits to the data. (c) Schematic of the model and associated variables:
microprobe radius (a), radius (R), and length (L) of the build-up
region, probe displacement from trap center (Δx), and DNA
concentrations in the build-up region (cbu) and in bulk (c).
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Our theoretical estimations demonstrate that the time-
varying concentration inhomogeneity manifests in exper-
imental measurements as a separate exponential decay with
timescale τ ¼ τ1, and does not interfere with the intrinsic
stress response of the system. A longer LSP induces more
inhomogeneity, i.e., denser build-up region, which takes
longer to homogenize, resulting in slower decay of the
osmotic pressure force.
While the build-up region dictates the stress response in

single-strain experiments, the inhomogeneity field in the
strain path, i.e., the depletion region, becomes crucial for
MLAOS measurements. We focus our MLAOS analysis on
the maximum value of stress reached in each cycle σmax,
seen as peaks in the repeated stress profiles [Fig. 3(a)]. For
all Δt values σmax decreases in successive cycles and the
decay of σmaxðtÞ fits well to a double-exponential function,
σmaxðtÞ ¼ C3e−t=τ3 þ C4e−t=τ4 , where τ3 and τ4 are the two
characteristic decay times, t ¼ 0 denotes the moment of
occurrence of the first stress peak, and t ¼ nΔt (where n is
the cycle number starting with n ¼ 0 for the first strain
path) [Fig. 3(b)]. The shorter relaxation time τ3 is inde-
pendent ofΔt, with an average value of ∼0.6 s (≈τR), while
τ4 increases linearly with Δt [Fig. 3(b) inset].
The forces acting on the probe in MLAOS measurements

are described by the same force balance equation
kΔxðtÞ þ 6πηaðdΔx=dtÞ þ fosðtÞ þ feðtÞ ¼ 0, so the
stress variation can again be described by σðtÞ ¼
ðk=πa2Þe−kt=6πηa R dt0½fosðt0Þ þ feðt0Þ�ekt0=6πηa. Similar to
the single-strain case, the second term decays exponentially
with a characteristic timescale similar to τR, due to the
elastic relaxation of the strained DNA (Supplemental
Material [33], Fig. S3). Conversely, the osmotic force
decays linearly with the decreasing concentration gradient
of DNA across the probe in subsequent cycles.
We use a toy model depicted in Fig. 3(c) (further

described and validated in the Supplemental Material
[33]) to derive an analytical expression for this temporal
decay of inhomogeneity. In the course of each cycle the
probe sweeps away DNA from the strain path, leaving it
initially fully depleted. In a time interval Δt, before the
probe passes through that location again, DNA molecules
from the neighboring region of lateral dimension

ffiffiffiffiffiffiffiffiffi
DΔt

p
diffuse into the strain path and get swept away in the
next strain cycle. Hence, the DNA concentration in
the neighboring region, cnðtÞ, decreases with time. At
a finite time t, the inward diffusive flux from
the bulk to the neighboring region can be given by JinðtÞ ¼
−Dð∂c=∂rÞ ≈ 2D½(c − cnðtÞ)=

ffiffiffiffiffiffiffiffiffi
DΔt

p �. Similarly, the out-
ward flux from the neighboring region to the depletion
region is JoutðtÞ≈2D½(cnðtÞ−csp)=

ffiffiffiffiffiffiffiffiffi
DΔt

p �, where we have
taken a time-averaged value of the periodically varying
concentration at the strain path, csp, since cnðtÞ decreases
over a timescale several times longer than Δt. Therefore,
the net change in cnðtÞ is given by the continuity equation

ðdcn=dtÞ¼ ð1=4πa ffiffiffiffiffiffiffiffiffi
DΔt

p Þ½2πðaþ ffiffiffiffiffiffiffiffiffi
DΔt

p ÞJinðtÞ−2πaJout
ðtÞ� ¼ ð1=aΔtÞ½ða þ ffiffiffiffiffiffiffiffiffi

DΔt
p Þc þ acsp − ð2aþ ffiffiffiffiffiffiffiffiffi

DΔt
p Þcn�.

The solution of this first-order differential equation
describes the time dependence of cnðtÞ, with an exponen-
tially decaying leading term that satisfies the boundary
condition cnðt¼0Þ¼c and a decay time τ0 that is propor-
tional to Δt.

FIG. 3. The maximum stress induced in entangled DNA during
MLAOS measurements exhibits two-phase exponential decay.
(a) Sample applied strain γðtÞ (orange, right axis) and measured
stress σðtÞ (brown, left axis) during anMLAOSmeasurement with
period Δt. Black circles denote the maximum stress measured for
each oscillation σmaxðtÞ. (b) σmaxðtÞ values (hollow squares) for ten
oscillations with Δt values of 0.44 (blue), 0.89 (green), and 1.49 s
(olive), all fit to double-exponential decays (solid lines) with decay
times τ3 and τ4. Inset: τ3 and τ4 (color-coded squares and circles
with error bars) versusΔtwith linear fits to the data. (c) Schematic
of the model with the associated variables: probe radius (a), probe
speed (v), displacement of probe from the trap center (Δx), width
of the neighboring region (

ffiffiffiffiffiffiffiffiffi
DΔt

p
) comprising DNA that diffuses

into the strain path in wait time Δt, DNA concentrations in the
strain path (csp), neighboring region (cn), and bulk (c).
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Using this framework,we can describe the time-dependent
inhomogeneity in the strain path, cspðtÞ, by a similar differ-
ential equation, ðdcsp=dtÞþð2D=a2Þcsp¼ð2D=a2Þcn, with
boundary condition cspðt ¼ 0Þ ¼ 0 where t ¼ 0 denotes
when the probe has just passed (beginning of cycle).
Solving this equation gives csp ¼ cnð1 − e−2Dt=a2Þ, which
attains amaximumvaluecnð1 − e−2DΔt=a2Þ at the end of each
cycle (t ¼ Δt), and gives rise to the osmotic force fosðtÞ.
Hence, fosðtÞ, and in turn, the first term in σðtÞ follows the
same exponential decay in t as that of cnðtÞ, with a decay
time τ0 ∝ Δt.
Our calculations validate the experimental observation

that the strain-induced time-varying inhomogeneity in the
strain-path causes an additional exponential decay in the
peak stress measured at each cycle in an MLAOS experi-
ment with a decay time proportional to the oscillation
period, as τ4 ¼ τ0 ∝ Δt. While the dynamics of the inho-
mogeneity field are faster at higher oscillation frequencies,
the amplitude of the oscillation determines the degree of
inhomogeneity. The larger the amplitude (LSP), the more
DNA the probe drags from the strain path (directly) and
neighboring region (indirectly) to the build-up zone in each
cycle, creating a stronger inhomogeneity field. Our analysis
thus demonstrates how to effectively separate out the
complex dynamics of the inhomogeneity field induced
by OTMmeasurements from the intrinsic stress response of
macromolecular systems.
Here, we couple a robust set of optical tweezers mea-

surements with modeling and analytical calculations to
demonstrate the formation of time-varying inhomogeneity
fields created by OTM experiments, and elucidate their effect
on the microrheological response of polymeric materials.
Our specific results for entangled DNA show that nonlinear
stress relaxation of entangled polymers at micro- and
mesoscales is governed by Rouse-like elastic retraction,
occurring over the classically predicted Rouse time τR, rather
than the slower and oft-assumed dominant mechanism of
entanglement tube disengagement (occurring over τD). More
generally, we show that the generation of local concentration
inhomogeneities in macromolecular systems is inevitable in
the nonlinear regime—when strain rates are much faster
than the system relaxation rate or the strain amplitude is
much larger than the system correlation length—such as
with the presented MLAOS protocols. However, we illus-
trate that post-strain homogenization does not interfere with
the intrinsic stress relaxation dynamics of the system, rather
it manifests as an independent component in the stress decay.
This additional component is identified by a distinct decay
time that varies linearly with the oscillation period (MLAOS)
or maximum strain value (single-strain). Thus, our study
opens up possibilities of performing nonlinear OTM mea-
surements, such as MLAOS, on a wide range of complex
macromolecular systems to probe their intriguing nonlinear
and scale-dependent rheological properties.
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