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The spin S ¼ 1
2
Kitaev honeycomb model has attracted significant attention since emerging candidate

materials have provided a playground to test non-Abelian anyons. The Kitaev model with higher spins has
also been theoretically studied, as it may offer another path to a quantum spin liquid. However, a
microscopic route to achieve higher spin Kitaev models in solid state materials has not been rigorously
derived. Here we present a theory of the spin S ¼ 1 Kitaev interaction in two-dimensional edge-shared
octahedral systems. Essential ingredients are strong spin-orbit coupling in anions and strong Hund’s
coupling in transition metal cations. The S ¼ 1 Kitaev and ferromagnetic Heisenberg interactions are
generated from superexchange paths. Taking into account the antiferromagnetic Heisenberg term from
direct-exchange paths, the Kitaev interaction dominates the physics of the S ¼ 1 system. Using an exact
diagonalization technique, we show a finite regime of S ¼ 1 spin liquid in the presence of the Heisenberg
interaction. Candidate materials are proposed, and generalization to higher spins is discussed.

DOI: 10.1103/PhysRevLett.123.037203

Introduction.—Highly entangled quantum spin liquids
provide exotic phenomena including fractional excitations
[1,2]. Among several proposed quantum spin liquid mod-
els, an exactly solvable model is a bond-dependant inter-
action of spin S ¼ 1

2
on the two-dimensional (2D)

honeycomb lattice proposed by Kitaev [3]. The ground
state of the S ¼ 1

2
Kitaev model offers non-Abelian anyons

under a magnetic field. Recently the smoking-gun evidence
of such particles was supported by the half-integer quan-
tized thermal Hall conductivity in α-RuCl3 [4], making it
the most promising candidate to display Kitaev physics.
Along with the rapid progress on the S ¼ 1

2
Kitaev spin

liquids in solid state materials [5–24], the theoretical
condensed matter physics community has considered a
higher spin S Kitaev model. A first attempt was made by
Baskaran and collaborators [25]. They showed that for
arbitrary spin S, localized Z2 flux excitations are present, as
plaquette operators can be constructed, and a vanishing
spin-spin correlation beyond nearest neighbors is found
[26]. Unlike the S ¼ 1

2
model, the higher S Kitaev model is

not exactly solvable, and several numerical studies have
been performed. In particular, the S ¼ 1 Kitaev model has
been studied by using exact diagonalization (ED) and
thermal pure quantum (TPQ) techniques and it was
suggested that the ground state of the S ¼ 1 Kitaev model
may be a gapless spin liquid [27]. Using high-temperature
series expansions and TPQ, a double peak structure in the
specific heat similar to S ¼ 1

2
and an incipient entropy

plateau at value of 1
2
ln 3 were found in the S ¼ 1 model

[27,28]. Dynamics of the classical (S → ∞) Kitaev spin

liquid was also studied and it was suggested that the
quantum model can be understood by fractionalization of
magnons in one-dimensional manifolds [29]. While these
theoretical results promote another path to quantum spin
liquids, there has been a lack of microscopic routes to
achieve spin S Kitaev model in solid state materials.
In this Letter, we present a way to generate the S ¼ 1

bond-dependent Kitaev interaction in 2D Mott insulators
with edge-shared octahedra. Two essential ingredients are
strong Hund’s coupling among two electrons in eg orbitals
and strong spin-orbit coupling (SOC) at anion sites. Using a
strong coupling expansion, we show that the bond-depend-
ant interactions are generated via superexchange between
two cations with eg orbitals mediated by anion p orbital
electrons with strong SOC. 12- and 18-site ED results of the
S ¼ 1 Kitaev-Heisenberg (KH) model show a finite regime
of the Kitaev spin liquid. Candidate materials are proposed,
and generalization to higher spin bond-dependent inter-
actions are also discussed.
Microscopic mechanism for the S ¼ 1 Kitaev model.—

We consider a 2D edge-shared octahedral system with two
types of atoms. The honeycomb (or triangular) network is
made of transition metal (M) cations with half filled eg
orbitals such as d8 electronic configuration. The anion (A)
atoms with fully occupied p orbitals form edge-shared
octahedral cages around every M site as shown in Fig. 1.
The Hamiltonian consists of the on-site interactionsH0 and
hopping between theM and A sites, Hkin. For 3d transition
metals, such as Ni2þ, typical energy scales of the hopping
parameters are smaller than the energy scales of the on-site
H0, which allows the use of standard strong coupling
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expansion theory. The on-site Hamiltonian of bothM and A
sites is described by the Kanamori interaction [30] and
SOC:

H0 ¼ U
X
α

nα↑nα↓ þ
U0

2

X
α≠β;
σ;σ0

nασnβσ0 þ λl · s

−
JH
2

X
α≠β;
σ;σ0

c†ασc
†
βσ0cβσcασ0 þ JH

X
α≠β

c†α↑c
†
α↓cβ↓cβ↑; ð1Þ

where the density operator nασ is given by c
†
ασcασ, and c

†
ασ is

the creation operator with α orbital and spin σ.U andU0 are
the intraorbital and interorbital density-density interaction,
respectively, and JH is the Hund’s coupling for the spin-
exchange and pair-hopping terms. Operators l and s,
respectively, denote angular momentum and spin for orbital
α and spin σ, and λ denotes the strength of SOC.
In general, the competition between Hund’s coupling

and SOC leads to a different atomic state [31]. For the M

sites with eg orbitals, the SOC is inactive when the crystal
field splitting between t2g and eg is bigger than the SOC
strength. Here we consider d8 systems, such as Ni2þ, where
t2g orbitals are fully filled, and the crystal field splitting is
larger than the SOC. In this case, the SOC does not mix the
eg states, as the eg orbitals are made of the z component of
angular momentum of�2 and 0. In the half-filed eg orbitals
the Hund’s coupling selects the total spin S ¼ 1 state with
energy U0 − JH. On the other hand, for the A sites with p
orbitals, the SOC splits the p orbitals into total angular
momentum j ¼ 3

2
and j ¼ 1

2
states. The Hund’s coupling for

A sites is only relevant for excited states in the perturbation
theory. The full energy spectrum of H0 required for the
perturbation theory is listed in Table 1 in the Supplemental
Material [32]. To differentiate U, U0, JH for the d and p
orbitals, we use the subscript d=p for Ud=p, U0

d=p, and
JHd=p

, which refer to the on-site interactions for d=p orbitals

from now on. Similarly, we use d† and p† to represent
creation operators for the d and p orbital, respectively. For
SOC, we have only λp because λd is inactive in the eg
orbitals when the crystal field splitting is larger than the
SOC, which is the case for 3d systems.
Let us consider the nearest neighbor (NN) hopping

parameters between the M and A sites to construct a
minimal NN spin model. Since the p orbitals are fully
filled, and eg orbitals are half filled, we consider holes
rather than electrons. Then in the ground state of the atomic
Hamiltonian H0, there is no hole in the p orbitals while eg
orbitals are half filled. It is straightforward to build the
tight-binding model:

Hkin ¼
X
hi;ji
σ

d†i;ασM
ði;jÞ
α;β pj;βσ þ H:c:; ð2Þ

where d†i;ασðp†
j;βσÞ creates one of the dðpÞ orbitals denoted

by αðβÞ and spin σ on site iðjÞ. The hopping matrix Mði;jÞ
depends on the ði; jÞ bond. As shown in Fig. 1, there are
three distinct hopping integrals t1, t2, and t3 denoted by the
red, blue, and green colored curves, respectively. They
appear on different bonds. For example,

along the x axis∶ t1d
†
i;x2−y2pj;x − t2d

†
i;3z2−r2pj;x þ H:c:;

along the y axis ∶ − t1d
†
i;x2−y2pj;y − t2d

†
i;3z2−r2pj;y þ H:c:;

along the z axis∶ t3d
†
i;3z2−r2pj;z þ H:c: ð3Þ

All other bond directions are related by symmetry such as
mirror symmetry, and the set of tight binding parameters is
given in Table 2 in the Supplemental Material [32]. They
can be represented by the Slater-Koster parameters [33],
i.e., t1 ¼ ð ffiffiffi

3
p

=2Þtpdσ, t2 ¼ 1
2
tpdσ , t3 ¼ tpdσ if the perfect

cubic symmetry is preserved.

FIG. 1. Indirect hopping integrals between M and A sites are
denoted by the colored curved lines. The red, green, and blue
colors represent t1, t2, and t3, respectively, and the sign of the
hopping integrals is ignored for simplicity. The M sites with eg
orbitals are located in the center of each octahedral cage formed
by A sites occupied by three p orbitals. The Kitaev bond-
dependent interactions X, Y, and Z bonds are, respectively,
represented by the red, green, and blue shaded regions. For
clarity, every A site is drawn by two separated A sites to represent
different hopping contributions from different p and eg orbitals.
The global coordinates of the x, y, and z axes are shown in the
center of the honeycomb plane.
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Treating the tight binding Hamiltonian Hkin as a pertur-
bation to the on-site Hamiltonian H0, a NN spin model for
S ¼ 1 on the honeycomb lattice with edge-shared octahedra
via superexchange processes is determined. Before we
derive the model explicitly, it is straightforward to check
that the symmetry of the edge-shared octahedral crystal
allows Heisenberg J, Kitaev K, and symmetric off-diagonal
Γ interactions [11,34,35].
There are several processes that contribute to the spin

interaction and we categorize them by the number of holes
at a given site. The one hole processes include intermediate
states with one hole at most on any A site and the two hole
processes include intermediate states with two holes on an
A site. In the one hole processes, the SOC λp generates
intermediate states of different energies, depending on
whether the one hole state is j ¼ 1

2
or 3

2
. For the two hole

process, p orbital Hund’s coupling JHp
becomes as

important as the SOC, and we will consider two limits
of JHp

→ 0 and λp → 0 to show the origin of the Kitaev
interaction.
Taking into account all possible fourth-order super-

exchange processes shown in the Supplemental Material
[32], the resulting NN spin model consists of the Kitaev and
Heisenberg interactions:

Hγ
hiji ¼ KγSγi S

γ
j þ JindSi · Sj; ð4Þ

where i, j are NN sites, and γ refers the X-, Y-, and Z-bond
type. S is the spin 1 operator and its bond-dependent
interaction takes the γ ¼ x, y, z spin component. The spin
components are directed along the cubic axes of the
underlying ligand octahedra, so the honeycomb layer lies
in a plane perpendicular to the [111] spin direction as
shown in Fig. 1. Note that the Γ term is exactly 0 within the
fourth-order term, and Jind ¼ − 1

2
Kγ .

The expressions of Kγ and Jind are presented in the
Supplemental Material [32] and they can be simplified in
certain limits. With the cubic symmetry, i.e., t21 ¼ 3

4
t23 and

t22 ¼ 1
4
t23, K

x=y ¼ Kz ≡ K. When Ud and the atomic poten-
tial difference Δ between the M (ϵM) and A (ϵA) sites (i.e.,
Δ≡ ϵM − ϵA) are the largest energy scales, it simplifies to

K ∼
3

2
λ2pt4pdσ

�
1

ð2Ud þ ΔÞ5 þ
1

2Udð2Ud þ ΔÞ4
�
: ð5Þ

For a Mott insulator, i.e., Δ > Ud, one can further simplify
to K ∼ 3

4
ðλ2pt4pdσ=UdΔ4Þ≡ 3

4
ðt2ind=UdÞ, where tind ¼

ðλpt2pdσ=Δ2Þ describes the effective hopping between the
M and M site via the A sites. When the cubic symmetry is
slightly broken, a slight difference between Kz and Kx=y

appears as shown in the Supplemental Material [32]. The
Heisenberg interaction Jind via the superexchange process
is ferromagnetic and its strength is half of the K term.
Interestingly, Jind is finite when the large SOC of the anion

sites is present, even when Hund’s coupling JHp
is absent.

For the other limit of λp → 0, the ferromagnetic Heisenberg
interaction from two-hole processes is found and the Kitaev
term vanishes.
There is also a direct hopping t between the M sites,

which leads to the antiferromagnetic Heisenberg term
Jdir ∼ 4t2=Ud. Given the distance between the M and A
sites vs M sites, the direct hopping integral t is an order of
magnitude smaller than the indirect t1, t2, t3 hoppings;
however, the perturbation process involves second order
terms. Thus the antiferromagnetic Heisenberg term Jdir of
similar strength to the ferromagnetic term Jind may be
generated via direct hopping. Since the direct and indirect
Heisenberg terms come with opposite signs, one may
expect a small total Heisenberg interaction J ≡ Jdir −
jJindj and the Kitaev interaction dominates the physics of
the spin S ¼ 1 systems.
Exact diagonalization of S ¼ 1 KH model.—We show

that the NN spin model of two electrons in the eg orbitals
surrounded by anions with strong SOC forming edge-
shared octahedra consists of the S ¼ 1 Kitaev and
Heisenberg interactions. It is worthwhile to check if the
S ¼ 1 Kitaev spin liquid survives in the presence of the
Heisenberg term. We carry out ED calculations to deter-
mine the phase diagram near the antiferromagnetic Kitaev
term. The ED results are shown in Fig. 2(a) on two clusters
of N ¼ 12 and N ¼ 18 sites using the periodic boundary
conditions in Figs. 2(b) and 2(c), respectively. Phase
transitions are identified by the singular behavior of the
second derivative of the ground state energy density (uGS)
with respect to the variable J=K, i.e., −∂2

J=KuGS.
Our results show three phases. A finite region of the

Kitaev phase around the antiferromagnetic K point appears
with a J=K window of width ∼0.06, similar to the spin 1

2

with a J=K window of ∼0.07 [9]. While the Kitaev phase
occupies a narrow phase space at zero temperature, it would
govern physical properties of finite temperature and finite
magnetic fields, similar to the spin 1

2
systems, if the system

can be tuned closer to the Kitaev phase. To clarify the
nature of the three phases, we examine the spin-spin (SS)
correlations of the three regions using the 12-site cluster,
which are shown in Fig. 2 of the Supplemental Material
[32]. The SS correlation is finite only on the NN bond, and
zero for any further neighbors at J=K ¼ 0, consistent with
the pure Kitaev S ¼ 1 phase [25]. For J=K ∼ 0.3 we find
antiferromagnetic (AFM) correlations, while for J=K ∼
−0.3 the zigzag (ZZ) correlations are present. These
magnetically ordered phases match the magnetic orderings
found in the spin 1

2
and classical spin model results [9]. The

phase transitions seem to be of first order, but due to finite
size effects, an intrinsic problem of the ED technique,
further studies are required to pin down the nature of the
transitions.
Kitaev candiate materials.—A single layer of NiI2 is a

candidate for S ¼ 1 Kitaev materials on a triangular lattice.
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The triangular lattice has X, Y, and Z bond defined
similarly to the honeycomb lattice and the above derivation
of the mechanism is applicable. The bulk compounds form
triangular layers of Ni cations and I anions form edge-
shared octahedral cages around Ni. While the bulk NiCl2 is
ferromagnetic below 52 K [36], the heavier sister com-
pound NiI2 has helimagnetic order below 75 K [37,38]. The
helical ordering in the bulk compound is related to the layer
coupling as the ordering wave vector involves the lattice
vector perpendicular to the triangular layer [38]. Thus a
single layer of NiI2 is desirable to test the dominant Kitaev
interaction.
Another group of potential materials is the layered

transitional metal (M) oxide compounds A3Ni2XO6

(A ¼ Li, Na, X ¼ Bi, Sb). Unlike the simple binary
NiI2, the M sites are surrounded by edge-shared oxygen
octahedral cages, forming layers of honeycomb networks
sandwiched between layers of the alkali A sites. X sites
reside in the center of the honeycomb. A3Ni2XO6 exhibits
ZZ ordering at low temperatures [39,40]. There are 2
electrons in eg orbitals making total spin S ¼ 1 states, a
good example for the proposed mechanism. The strong
SOC may occur via proximity to the heavy X atoms. While
the oxygen has a weak atomic SOC, the heavy X atoms
with strong SOC λX induce splitting among the p orbitals of

the oxygen atoms leading to similar effects presented
above. For instance, the effective SOC could be enhanced
when one considers hopping between X and O sites
denoted by tpp. Using a perturbative approach, the strength
of the effective SOC in the p orbitals of O sites is then
determined by λ̃p ∼ f½t2pp=Δ̃ − ðλX=2Þ� − ½t2pp=Δ̃þ λX�g,
where Δ̃ is an atomic potential difference between the X
and O atoms. While it is difficult to quantify λ̃p in this case,
we note that the specific heat measurements resulting in
entropy of ∼ 1

2
log 3 per Ni above the Néel temperature for

both Li3Ni2SbO6 and Na3Ni2SbO6 [39] strongly hint that
they are promising candidates for S ¼ 1 Kitaev honeycomb
materials.
Outlook and summary.—The bond-dependent inter-

actions are ubiquitous in Mott insulators with an edge-
shared octahedral environment and strong SOC. This is
because SOC mixes different orbitals and spin compo-
nents at a given site, and bond-dependent spin interactions
rely on the hopping integrals of the bond, whose size is
determined from the overlap of relevant orbitals.
However, the approach taken in the compass [5] and
generic spin model [11] does not work for higher spins.
This is because Hund’s coupling, which maximizes the
total spin, is necessary for a higher spin such as S ¼ 1 of
two electrons in eg or S ¼ 3=2 of three electrons in t2g.
On the other hand, the bond-dependent interaction
requires a mixture of spins via SOC, which works against
the Hund’s coupling. Thus it has been unclear how to
generate a higher spin Kitaev model.
Here we derive a microscopic S ¼ 1 Kitaev interaction

via superexchange processes between half-filled eg orbital
cations mediated by p orbital anions with strong SOC
using the standard strong coupling expansion. We find the
dominant interaction is the antiferromagnetic Kitaev term,
whose strength is twice as big as that of the ferromagnetic
Heisenberg interaction. Taking into account the direct
exchange process that results in an antiferromagnetic
Heisenberg term, we expect that the Kitaev interaction
dominates spin physics of these Mott insulators. A small
region of S ¼ 1 Kitaev phase with only NN spin-spin
correlation is found in 12- and 18-site ED calculations.
A finite ferromagnetic Heisenberg interaction stabilizes the
ZZ magnetic ordering nearby the spin liquid. S ¼ 1 Kitaev
candidates include a single layer of NiI2 on the triangular
lattice and A3Ni2XO6 with X ¼ Bi, Sb, and A ¼ Li, Na on
the honeycomb lattice.
The analysis presented in the current work can be

extended to a higher spin Kitaev model. For example,
Cr3þ leaves three electrons in the t2g orbitals that make spin
3
2
via Hund’s coupling assuming that the SOC at Cr sites is

negligible compared to Hund’s coupling in t2g orbitals,
which is likely the case due to a lighter atomic number.
Then the superexchange processes via strong spin-orbit
coupled anions lead to the Kitaev term, making CrI3 a
candidate for the spin S ¼ 3

2
Kitaev Mott insulator.

FIG. 2. (a) The phase diagram of the S ¼ 1 KH model. By
tuning the ratio of J=K, two transitions signaled by the singular
behavior of first (blue) and second (red) derivative of the ground
state energy density uGS are found on both the 12- and 18-site ED
clusters shown in (b) and (c), respectively. Energy density units
are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ K2

p
=N. There are three phases identified by spin-spin

correlators as discussed in the main text. The Kitaev spin liquid
(SL) appears near J=K ∼ 0, and AFM and ZZ orderings are,
respectively, found in the antiferromagnetic and ferromagnetic
Heisenberg interaction regions.
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A single layer of CrI3 shows a ferromagnetic ordering
with strong anisotropy [41–43] and investigating the
microscopic mechanism of such anisotropy from the
bond-dependent interactions is an excellent future study.
A group of van der Waals transition metal halides, such

as MX2 and MX3, provides a rich family of magnetic
materials. The dihalidesMX2 and trihalidesMX3 are made
of triangular and honeycomb networks of transition metal
cations, respectively, surrounded by edge-shared anions X
[44]. When X is heavy, the strong SOC at X sites plays a
role in the magnetic mechanism presented in this work.
Theoretical studies on these magnetic materials have been
limited to the first, second, and third NNHeisenberg model.
We propose to revisit these layered 3d transitional metal
compounds with edge-shared heavy anions from a new
perspective of bond-dependent interaction.
There are various experimental ways to test the Kitaev

interactions in these candidate materials. Inelastic neutron
scattering measurement allows us to map the microscopic
spin interactions in these Mott insulators. The magnetic
field is a way to induce or reveal the Kitaev spin liquids and
its effects have been widely studied in α-RuCl3 [45–60].
Note that the S ¼ 1 Kitaev materials suggested here have
the antiferromagnetic Kitaev interaction dominant, unlike
the S ¼ 1

2
Kitaev candidate RuCl3 that has the ferromag-

netic Kitaev interaction dominant. Thus the magnetic field
along the [111] direction may induce the U(1) spin liquid
with Fermi surface, similar to the S ¼ 1

2
case [50,53,

54,57–59]. Theoretical studies on S ¼ 1 Kitaev materials
and experimental studies on a single layer of the proposed
materials with and without the magnetic field are interest-
ing projects to pursue in the future. Determining S ¼ 3

2

Kitaev materials and their magnetic field dependence are
also excellent tasks for future studies.
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Note added.—Recently, we noted Ref. [61] where a
ferromagnetic S ¼ 3

2
Kitaev interaction is suggested to

understand the angle-dependent ferromagnetic resonance
experimental data on CrI3.
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