
 

Exact Localized and Ballistic Eigenstates in Disordered Chaotic Spin Ladders
and the Fermi-Hubbard Model

Thomas Iadecola1 and Marko Žnidarič2,3
1Joint Quantum Institute and Condensed Matter Theory Center, Department of Physics,

University of Maryland, College Park, Maryland 20742, USA
2Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

3Abdus Salam ICTP, Strada Costiera 11, 34151 Trieste, Italy

(Received 29 November 2018; published 16 July 2019)

We demonstrate the existence of exact atypical many-body eigenstates in a class of disordered,
interacting one-dimensional quantum systems that includes the Fermi-Hubbard model as a special case.
These atypical eigenstates, which generically have finite energy density and are exponentially many in
number, are populated by noninteracting excitations. They can exhibit Anderson localization with area-law
eigenstate entanglement or, surprisingly, ballistic transport at any disorder strength. These properties differ
strikingly from those of typical eigenstates nearby in energy, which we show give rise to diffusive transport
as expected in a chaotic quantum system. We discuss how to observe these atypical eigenstates in cold-
atom experiments realizing the Fermi-Hubbard model, and comment on the robustness of their properties.
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Introduction.—The standard theory of matter uses equi-
librium statistical ensembles to classify all possible phases
according to local order parameters. This classical picture
was shattered in recent decades by two important realiza-
tions. First, there are topological phases that are indistin-
guishable by local order parameters. Second, there are
eigenstate phases [1] that arise when a system fails to
thermalize [2] and standard equilibrium ensembles do not
describe the late-time dynamics. Because eigenstate phases
are athermal, standard no-go theorems prohibiting equilib-
rium phase transitions in, e.g., one-dimensional systems do
not apply, opening a new world of possibilities.
While the general conditions for the occurrence of such

phases are not known, disordered systems provide a para-
digmatic example: for sufficiently strong disorder a many-
body localized (MBL) phase can appear [3–6]. One exciting
feature of such localized systems is that they can preserve
quantum order at infinite temperature [7–9], enabling, e.g.,
the storage of quantum information [10,11]. One therefore
has an interesting interplay of interactions, disorder, and
symmetry.
A natural question is whether there is new interesting

physics between the two extremes represented by thermal-
izing and nonergodic systems. The answer is yes. In clean
systems a so-called quantum disentangled liquid has been
proposed [12–14] where some degrees of freedom have an
area-law entanglement entropy. Related but different pos-
sibilities include weak ergodicity breaking in clean one-
dimensional (1D) systems due to local Hilbert-space
constraints [15], dynamical bottlenecks [16–19], energy-
scale separation [20,21], or an effective initial-state
disorder due to conserved quantities [22–24] or gauge

invariance [25]. While in 1D spin-1=2 systems sufficiently
strong disorder will cause full MBL, in higher dimensions
[26] one might expect delocalization [27] (see though
Ref. [28]) and ergodicity. An intermediate regime where
rich new phases might be possible is disordered spin ladder
models or, equivalently, systems with on-site Hilbert space
dimension greater than 2. Such models arise naturally in
systems with symmetries, such as experimental implemen-
tations [29,30] of the disordered Fermi-Hubbard chain [31],
which have an SUð2Þ spin-rotation symmetry. One can
argue that non-Abelian symmetries favor delocalization
due to the presence of highly degenerate multiplets
[9,32,33]. This is indeed what happens: spin and charge
degrees of freedom behave markedly differently [34], and
there is an ongoing discussion [35–42] on the ultimate fate
of such SUð2Þ symmetric systems, and more generally of
models with enlarged on-site Hilbert spaces and discrete
non-Abelian [43,44] or Abelian [45] symmetries.
We study the role of symmetries in a class of interacting

systems with on-site disorder. By an explicit construction
we prove the existence of exponentially large invariant
subspaces that are either ballistic or localized regardless of
the disorder or interaction strength, and are present in
integrable as well as in chaotic models, irrespective of
SUð2Þ symmetry. This shows that even an innocuous
looking system, classified as quantum chaotic according
to eigenlevel statistics, can violate the strong eigenstate
thermalization hypothesis [46–48], stating that in the
thermodynamic limit all eigenstates should be thermal.
Furthermore, the class of models discussed includes the
disordered Fermi-Hubbard chain realized in recent experi-
ments [30] probing MBL; we thus rigorously show the
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importance of symmetries and that choosing specific
simple initial states can fundamentally influence dynamics
in such experiments.
Models.—We study a class of two-leg spin ladders with

the Hamiltonian

H ¼ Hjj þH⊥ ¼ 1

4

XL−1

k¼1

hjjk;kþ1 þ
1

4

XL

k¼1

h⊥k ; ð1aÞ

where

hjjk;kþ1 ¼ σxkσ
x
kþ1 þ σykσ

y
kþ1 þ τxkτ

x
kþ1 þ τykτ

y
kþ1;

h⊥k ¼ Jðσxkτxk þ σykτ
y
kÞ þ Δkσ

z
kτ

z
k þ hkðσzk þ τzkÞ: ð1bÞ

Rungs of the ladder are labeled by k ¼ 1;…; L, and spins
on the upper and lower legs of the ladder are represented by
Pauli matrices σαk and ταk (α ¼ x, y, z), respectively. In
numerical examples hk is drawn uniformly at random from
the interval ½−h; h�. For J ¼ 0 the model is equivalent to the
Fermi-Hubbard model by a Jordan-Wigner transformation
[49] (spins on the upper and lower legs correspond to spin-
up and spin-down fermions, respectively, and Δk corre-
sponds to the on-site Hubbard interaction).
The model (1) has a Uð1Þ symmetry associated with the

total magnetization Z ¼ P
L
k¼1ðσzk þ τzkÞ. It also has a Z2

symmetry σαk ↔ ταk. In the Hubbard case (J ¼ 0) one has an
additional SUð2Þ spin-rotation symmetry [50]. This moti-
vates the definition of “charge” and “spin” densities
dk ≡ 1

2
ðσzk þ τzkÞ and sk ≡ 1

2
ðσzk − τzkÞ, respectively. In the

Hubbard language, hdki ¼ �1 corresponds to the presence
of a doublon or holon, while hski ¼ �1 corresponds to the
presence of a spin-up or spin-down fermion.
Quantum ergodicity.—We now demonstrate that the

class of Hamiltonians in Eq. (1) is generically quantum
chaotic when the disorder strength h is not too large [the
clean limit of Eq. (1) was studied in Ref. [51]]. This will
establish the atypicality of the special eigenstates con-
structed below. One common indicator of quantum chaos is
the distribution of the spacing s between adjacent many-
body energy levels [52]. After averaging over disorder,
once all symmetries have been resolved and energies
corresponding to the atypical eigenstates have been
removed, we find a distribution consistent with Wigner-
Dyson statistics typical of chaotic systems; see Fig. 1.
Another indicator of quantum ergodicity is diffusive

transport, which we demonstrate arises in the model (1)
when disorder is sufficiently weak. Focusing on high
temperature (energy density) transport in large systems
we employ a boundary driven Lindblad master equation
[53,54]. We use four Lindblad operators that raise or lower
the magnetization at site k ¼ 1 (two for each ladder leg),
and four that act at k ¼ L. Details about the method and
driving, which induces transport of the charge dk (which is
conserved also for J ≠ 0), can be found in, e.g., Ref. [55],

where a clean Hubbard model was studied. At late times
the solution ρðtÞ of the Lindblad master equation reaches
a unique nonequilibrium steady state (NESS) ρ∞.
Transport is probed by calculating the L dependence of

the NESS current expectation value, j≡ trðρ∞jðdÞk Þ, with
jðdÞk ≡ 1

4
ðσxkσykþ1 − σykσ

x
kþ1Þ þ 1

4
ðτxkτykþ1 − τykτ

x
kþ1Þ that satis-

fies _dk ¼ jðdÞk − jðdÞk−1. For large L the boundary density is
trðρ∞d1;LÞ ≈�μ and so for our weak driving μ ¼ 0.1 we
have Δd≡ hd1i − hdLi ≈ 0.2. For small disorder h ¼ 0.5
or h ¼ 1 the charge density profiles (not shown) are linear,
as expected for diffusion. In Fig. 2 we show that j ∼ 1=L,
so that the diffusive law j ¼ DðΔd=LÞ holds. We stress that
the observed diffusion is not a consequence of boundary
driving but a true property of the bulk [56].
Invariant subspaces.—We now explicitly construct a

number of invariant subspaces of the Hamiltonian (1) that

FIG. 1. Level spacing distribution for a generic instance of the
model (1), averaged over 100 disorder realizations. The distri-
bution is well described by the Wigner-Dyson distribution (blue).
Inset: Disorder-averaged density of states vs energy density ϵ
(normalized to lie within the interval [0, 1]) for the same model.
Eigenstates corresponding to energies between the black vertical
lines were used to accumulate the statistics in the main figure.
Dashed red vertical lines denote the bandwidth of a six-doublon
invariant subspace, demonstrating the finite energy density of
eigenstates within this subspace.
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FIG. 2. Diffusive NESS charge transport for weakly disordered
models in the full Hilbert space (full triangles for disorder
h ¼ 0.5, empty symbols for h ¼ 1). Both the Hubbard case
(down triangles and circles) and a generic ladder (squares and
triangles) are shown.
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will enable us to analytically show the existence of ballistic
and/or localized eigenstates irrespective of the values of the
parameters J, hk, and Δk. Let us take for a local basis the
eigenstates of h⊥k . Denoting by 0 and 1 the two eigenstates
of σz with eigenvalues þ1 and −1, respectively, and by,
e.g., j 1

0
i a rung state with 1 in the upper leg and 0 in the

lower, we have the four rung eigenstates described in
Table I. Products of rung eigenstates, i.e., jα1…αLi,
αk ∈ fS; T;H;Dg, are manifestly eigenstates of the total
rung Hamiltonian H⊥ with eigenenergies Eα⊥ ¼ 1

4

P
kE

αk
k .

Following Ref. [51], the leg Hamiltonian has a very simple
action on some basis states. Namely, acting on two
neighboring rungs gives

hjjk;kþ1jαkβkþ1i ¼ 2jβkαkþ1i; βj ∈ fS; Tg;
hjjk;kþ1jβkαkþ1i ¼ 2jαkβkþ1i; αj ∈ fH;Dg; ð2Þ

i.e., if a doublon or a holon meets a singlet or a triplet they
just exchange positions. Equation (2) specifies Hjj’s action
on 8 of the 16 two-rung basis states. Four more important
relations are the annihilations

hjjk;kþ1jfST; TS;HH;DDgi ¼ 0: ð3Þ

The action on the remaining four two-rung basis states [57]
induces a nontrivial dynamics outside of the invariant
subspaces, and will not be needed here.
Using relations (2) and (3) we can readily construct

invariant subspaces. First, we observe that the states
jSTST � � �i and jTSTS � � �i are annihilated by Hjj—they
are “vacuum” states (inert backgrounds). If we now
insert into one of these vacuum states an arbitrary number
of only doublons, or only holons, such a subspace will
be invariant under Hjj. Starting with, e.g., two holons
jSTSHjTSHkTS � � �i, a repeated action of Hjj will only
move the two holons around to all possible ðL

2
Þ positions j, k,

preserving the number of each of the four letters. Similar
behavior arises upon inserting only doublons. Inserting r
doublons (or holons) results in an ðLrÞ-dimensional invariant

subspace ofH (1). The total dimension of all such invariant
subspaces is 2Lþ2.
The Hamiltonian describing the dynamics within an

invariant subspace has constant off-diagonal elements for
each possible hop of D or H, and diagonal elements given
by the total rung eigenenergies Eα⊥. The dynamics is that of
noninteracting particles, i.e., a tight-binding model with on-
site energies given by the eigenenergies of the local rung
states αk (Table I). Depending on the choice of Δk and hk,
we can have rich free physics embedded within a seemingly
generic (chaotic or integrable) model. Let us single out
some of the more interesting examples: (i) constant Δj ≡ Δ
and uniformly random hj results in Anderson localization
in any doublon or holon subspace for any disorder strength
(their on-site disorder is simply �2hj, see Table I); (ii) dis-
ordered Δj ¼ hj causes a constant energy offset −hk for all
four basis states while the doublon state has an additional
on-site energy ofþ4hj, leading to Anderson localization in
the doublon subspaces and ballistic transport in the holon
subspaces, again irrespective of the disorder strength (see
Ref. [58] for a study of an interaction-disordered Hubbard
model); (iii) by using either case (i) or case (ii) with a
quasiperiodic potential hj ¼ λ cos ð2πκjþ ϕÞ one can
realize the Aubry-André-Harper model [59,60], which
features ballistic, diffusive, or localized dynamics depend-
ing on λ.
The subspaces constructed here do not seem to be related

to any local conserved quantity. They exist irrespective of
the presence or absence of SUð2Þ symmetry or integrability
(they arise both in the integrable clean Hubbard case and
the chaotic case with J ≠ 0). Crucial for their existence is
the simple nature of Hjj and the presence of a Z2 symmetry
leading to a decoupling of the singlet and triplet states from
disorder.
We emphasize that invariant subspaces with a finite

density of doublons or holons are exponentially large in
L and yield finite-energy-density eigenstates of the
Hamiltonian (1) because the bandwidth of such states scales
with the doublon or holon number (see inset of Fig. 1). Such
eigenstates are thus highly atypical: Anderson-localized
subspaces [cases (i)–(iii)] host eigenstates with area-law
entanglement that do not contribute to transport, while
subspaces that decouple from the disorder [cases (ii)–(iii)]
host volume-law-entangled eigenstates that provide a bal-
listic contribution to transport. In contrast, generic eigen-
states of the model (1) both exhibit volume-law entangle-
ment and contribute to diffusive transport. Moreover, these
invariant subspaces are spanned by simple product states
that are experimentally accessible, as we discuss below.
Experimental implementation.—The very fact that we

have localized subspaces should facilitate experimental
observation: clear ergodicity breaking can be observed
by preparing an initial product state in such a subspace.
This is illustrated in Fig. 3 for the important special case of
the Hubbard model. Starting from an initial state containing

TABLE I. Notation for eigenstates of h⊥k [see Eq. (1b)],
with corresponding eigenenergies and charge densities
dk ¼ 1

2
ðσzk þ τzkÞ.

Eigenstate Notation hdki Eigenenergy

Singlet jSi ≔ ð1= ffiffiffi
2

p Þðj 0
1
i − j 1

0
iÞ 0 ES

k ¼ −2J − Δk

Triplet jTi ≔ ð1= ffiffiffi
2

p Þðj 0
1
i þ j 1

0
iÞ 0 ET

k ¼ 2J − Δk

Doublon jDi ≔ j 0
0
i þ1 ED

k ¼ Δk þ 2hk
Holon jHi ≔ j 1

1
i −1 EH

k ¼ Δk − 2hk
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two doublons in an ST background, the initial charge stays
localized for h ¼ 2, while it relaxes ballistically in the clean
Hubbard model (h ¼ 0). Even if the initial state is prepared
imprecisely and does not lie exclusively within a localized
subspace, its time evolution will show a localized compo-
nent as long as it has finite overlap with one such subspace.
All ingredients needed for such an evolution have been

experimentally realized. The initial states can be chosen to
be simple product states. However, they are not in the
natural experimental basis of local-density product states
with definite fermion spin in the z basis. To reach these
states, two crucial ingredients are required. First, one needs
the ability to prepare initial states with a controlled charge
density and spin profile; progress in this direction has
recently been made with fermionic quantum gas micro-
scopes [61–63]. Moreover, high-fidelity single-site
addressing of the spin state in a bosonic optical lattice
was demonstrated in Ref. [64]. An example of a relevant
initial state to prepare to reach the subspace containing one
doublon on site k0 in a TS background is

…c†↓;k0−2c
†
↑;k0−1

ðc†↓;k0c
†
↑;k0

Þc†↓;k0þ1c
†
↑;k0þ2…jΩi; ð4Þ

where c†↑=↓;k creates a spin-up or spin-down fermion on
site k and jΩi is the vacuum. Performing a global spin
rotationU¼exp½−iðπ=2ÞSy�, where Sy¼ði=2ÞPkc

†
↓;kc↑;k−

c†↑;kc↓;k, then brings the z-basis fermion spin states into
the x basis [65]. In reality, such a rotation could be
performed in two steps, rotating first around the x axis
(by resonant pumping between hyperfine levels) and
then the z axis (using a Zeeman shift). The necessary
ingredients to perform such rotations have already been

demonstrated in experiments [64,66], even with single-site
resolution [64].
In practice, one also must contend with an inexact

realization of the model, including, e.g., weak breaking
of the Z2 leg-exchange symmetry (see, e.g., Ref. [67]). We
numerically check how much such weak symmetry break-
ing changes the dynamics on experimentally relevant
timescales. To that end we replace the Z2-symmetric
disorder in Eq. (1) with slightly asymmetric on-site fields,
hkσ

z
k þ h0kτ

z
k, where ðh0k − hkÞ=hk ¼ ξk is a random number

uniformly distributed over ½−ðε=2Þ; ðε=2Þ�. Using a matrix
product state ansatz we evolve the initial state under this
modified Hamiltonian with ε ¼ 0.04, J ¼ 0 and Δk ¼ hk,
starting with either a two-holon or a two-doublon initial
state. Recall that in this case, for perfect Z2 symmetry, the
doublons are localized, while the holons are ballistic.
Results are shown in Fig. 4. We can see that some spin
density skðtÞ is indeed created on a timescale ∼1=ε [for
ε ¼ 0 one has skðtÞ≡ 0], but grows only to about 10−1 with
time. The charge density dkðtÞ on the other hand shows the
same localized or ballistic dynamics as without the sym-
metry breaking. We note that for the Hubbard model with
Δk ≡ Δ, where holons and doublons are both localized, the
dynamics for ε ≠ 0 (data not shown) is essentially the same
as in Figs. 4(a) and 4(b). Thus the charge dynamics is rather
resilient for weak symmetry breaking.
Conclusion.—We have explicitly constructed a new

class of exponentially many ballistic or localized eigen-
states embedded in an otherwise (in general) chaotic model.

FIG. 3. Ballistic (top) vs localized (bottom) charge dynamics in
a two-doublon invariant subspace in the Fermi-Hubbard model
from exact diagonalization at L ¼ 100. The charge density
profile is shown for various times t ¼ 0;…; 400. Inset: Charge
density vs t on a single site initially populated by a doublon for
h ¼ 0 (red) and h ¼ 2 (blue). The dynamics outside of the
invariant subspaces is ergodic for h ¼ 2.
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FIG. 4. Evolution for a two-doublon [(a) and (b)], anda two-holon
initial state [(c) and (d)] for weak 4% breaking of Z2 symmetry
(ε ¼ 0.04). All data are for J ¼ 0,Δj ¼ hj,L ¼ 200, and the same
disorder realization in all frames.Color (shown in a log-scale) shows
the charge [(a) and (c)] and spin density [(b) and (d)].
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The phenomenon is exact and independent of interaction or
disorder strength, in contrast to, e.g., localized states
observed numerically for strong disorder in ladder systems
in Refs. [41,45]. While our construction includes the
disordered SUð2Þ-symmetric Fermi-Hubbard model as
an important special case, the result is more general and
does not rely on the presence of SUð2Þ symmetry. In this
sense it is also different from the (polynomially many)
special exact eigenstates with ∼ logL entanglement
entropy identified in nonintegrable SUð2Þ-symmetric
models [41,68–70].
Our results also shed light on the question of localization

in systems with non-Abelian symmetries. While it is known
that disorder can protect spontaneous symmetry breaking
[7–9], we find, intriguingly, that a reverse effect is
possible—a global Z2 symmetry can protect exponentially
many localized eigenstates against delocalization due to the
SUð2Þ symmetry. We note that such Z2 symmetry neces-
sarily arises in spinful fermionic models with on-site
disorder and SUð2Þ symmetry [71] probed experimentally
[29,30]. We also demonstrated the resilience of the sub-
space dynamics in the presence of weak Z2 symmetry
breaking. An interesting possibility is to construct essen-
tially arbitrary transport dynamics within an invariant
subspace using engineered disorder, as well as to generalize
these results to other models with more degrees of freedom
per lattice site.
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