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We present an approach to studying optical band gaps in real solids in which quantum Monte Carlo
methods allow for the application of a rigorous variational principle to both ground and excited state wave
functions. In tests that include small, medium, and large band gap materials, optical gaps are predicted with
a mean absolute deviation of 3.5% against experiment, less than half the equivalent errors for typical many-
body perturbation theories. The approach is designed to be insensitive to the choice of density functional, a
property we exploit in order to provide insight into how far different functionals are from satisfying the
assumptions of many-body perturbation theory. We explore this question most deeply in the challenging
case of ZnO, where we show that, although many commonly used functionals have shortcomings, there
does exist a one-particle basis in which perturbation theory’s zeroth-order picture is sound. Insights of this
nature should be useful in guiding the future application and improvement of these widely used techniques.
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The quantitative study of electronic excitations in solids
remains a central topic in condensed matter theory due to
their importance in the spectroscopic characterization of
materials and in technological applications such as light
harvesting. For many semiconductors, approaches based on
many-body perturbation theory (MBPT) in the form of the
GW [1] and Bethe-Salpeter equation [2] (BSE) methods
have been particularly successful [3], and these and related
methods remain a highly fruitful topic of research [4–11].
However, there remain many materials of great techno-
logical interest, especially within the transition metal
oxides, whose low-energy excitations are poorly described
by density functional theory (DFT) and MBPT.
Although MBPT does not, in principle, need to rely on

input from DFT, some of its most widely used practical
incarnations (e.g., G0W0) assume a zeroth-order picture, in
which electronic excitations are simple particle-hole tran-
sitions between the one-particle eigenstates of Kohn-Sham
DFT with transition energies given by differences between
these Kohn-Sham orbitals’ energies. In this picture, the
lowest excited state corresponds to a single open-shell
Slater determinant, in which one electron has been pro-
moted from the valence band maximum (VBM) orbital to
the conduction band minimum (CBM) orbital. Although
the DFT orbital energy difference is known to under-
estimate the corresponding band gap [3,12], this zeroth-
order picture is nonetheless quite close to reality when
solids like C diamond and Si are treated with standard
local-density approximation (LDA) [13] or generalized
gradient approximation [14] density functionals. In these
situations, the DFT orbitals closely resemble the excited
electron and hole states, and the orbital energy differences,

although not perfect, are close enough to reality that MBPT
variants that perturb around them can be quite accurate
[15]. The story can be strikingly different when a functional
produces one-particle states that differ significantly from
the true electron and hole states and/or the orbital energy
differences stray too far from reality. The success of hybrid
functionals [16,17] in improving gap predictions in areas
where pure functionals perform poorly [18,19] implies that
one or both of these issues can be sensitive to the fraction of
exact exchange. It is therefore not surprising that the
reliability of MBPT can be strongly dependent on the
choice of functional and what degree of self-consistency is
sought in the GW equations. Were it possible to inspect the
properties of the true excitonic wave function in challeng-
ing solids, one could hope to gain insight into why certain
density functionals satisfy MBPT’s assumptions better than
others and make the modeling of difficult materials’ spectra
substantially more predictive.
In this Letter, we present a variational formalism that

enables accurate and systematically improvable predictions
of a material’s lowest excited state wave function and the
corresponding optical gap, which can be used as a stand-
alone predictive tool and as a window into the relationship
between density functionals and the assumed zeroth-order
picture of MBPT. Our approach combines recent advances
in excited state variational principles [20–23] with a wave
function ansatz suitable for both the ground and the
VBM → CBM state. Crucially, the ansatz can describe
both nontrivial BSE-like superpositions of particle-hole
excitations and the dynamic polarizations of the electron
cloud found in the vicinity of an exciton. We stress that
this approach employs energy differences between neutral
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states and thus probes optical gaps, and so exciton binding
energies (EBEs) must be considered when comparing
with fundamental gaps. Gap comparisons aside, the fact
that the method yields an explicit wave function for the
VBM → CBM excitation allows us to directly inspect
how well a given density functional satisfies MBPT’s
zeroth-order picture and thus how likely it is that accurate
predictions will result.
Just as the energy E ¼ hΨjHjΨi=hΨjΨi can be mini-

mized to find a “variationally best” ground state within a
given ansatz, we find our excited state by minimizing

Ωðω;ΨÞ ¼ hΨjω −HjΨi
hΨjðω −HÞ2jΨi ¼

ω − E
ðω − EÞ2 þ σ2

; ð1Þ

whose global minimum is not the ground state but the H
eigenstate with energy immediately above the chosen value
ω [20], which we place within the band gap to target
the first excited state and thus predict the optical gap.
To mitigate the difficulty of dealing with the H2 term, our
QMCPACK [24] implementation evaluates Ω via variational
Monte Carlo (VMC) method [20,25] and minimizes it
using the linear method [20,26,27]. For a more detailed
discussion of how this approach is kept size extensive [22]
and balanced between states [21], as well as computational
details and the addressing of finite size effects, we refer the
reader to the Supplemental Material [28].
We pair this variational approach with a multi–Slater-

Jastrow [29,30] ansatz

Ψðr⃗Þ ¼ eUðr⃗ÞX

I

CIΦIðr⃗Þ; ð2Þ

where Uðr⃗Þ is a correlation factor [24]

Uðr⃗Þ ¼
X

ip

VpðripÞ þ
X

i<j

WðrijÞ; ð3Þ

detailed in the Supplemental Material [28]. This configu-
ration interaction (CI) of the Slater determinants ΦI is used
to accommodate the basic structure of each state and
account for state-specific polarization effects. For the
ground state, we include the closed-shell Kohn-Sham
determinant for the basic ground state structure, plus all
single-particle-hole excitations, which represent the lead-
ing-order terms in a Taylor expansion of the orbital rotation
that would transform the Kohn-Sham determinant into
whichever determinant minimizes Ω in the presence of
the correlation factor. For the excited state, we would like
to include all single-particle-hole excitations as in the BSE
approach as well as the closed-shell determinant and all
double particle-hole excitations. This would again allow us
to capture the leading-order effects of an orbital rotation
[31,32] that would in this case accommodate repolariza-
tions of the electron cloud in the vicinity of the exciton.
However, as it is prohibitively expensive to include all

double excitations in real materials, we approximate
orbital relaxations by first minimizing Ω for singles and
the closed-shell term and then adding only those doubles
that contain a singles component with coefficient larger
than 0.1.
As seen in Fig. 1 and Tables I and II, the approach in

which we include both singly and doubly excited configu-
rations in the excited state (VMC-CISD) is quite effective
for predicting optical gaps in small (Si), medium (C, LiH,
ZnO), and large (LiF) band gap materials. Its mean absolute
deviation (MAD) from experimental values across these
five systems is just 3.5% compared to MADs more than
twice this large for the optical gaps obtained by subtracting
the known exciton binding energies from G0W0 and self-
consistent GW gaps. Of course, MBPT is highly effective
in Si, C, and LiH, and so we expect that in these cases the
zeroth-order DFT wave function is sound. The analysis in
Fig. 2 confirms this expectation by showing that over 90%
of the VMC-CISD wave function is accounted for by the
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FIG. 1. VMC-CISD optical gap predictions plotted against
experimental results. See Table I for more details.

TABLE I. Band gaps in eV. The quasiparticle gaps of DFT and
the GW methods should be reduced by the EBEs when compar-
ing with the VMC and experimental optical gaps.

C Si LiH LiF

LDA 3.93 0.47 2.68 8.60
G0W0 5.50 [15] 1.12 [15] 4.64 [33] 13.27 [15]
GW 5.99 [15] 1.28 [15] 4.75 [34] 15.10 [15]
VMC-CIS 5.68(6) 1.41(6) 5.01(6) 14.6(1)
VMC-CISD 5.55(6) 1.20(6) 4.65(6) 12.7(1)
Experiment 5.50 [35] 1.17 [35] 4.90 [36] 12.6 [37]
EBE 0.07 [38] 0.015 [39] 0.1 [40] 1.6 [37]
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LDA’s VBM → CBM transition. Thus, in these three cases,
LDA provides good zeroth-order wave functions and we
can confirm that the accuracy of MBPT derives from the
appropriateness of its approximation.
The story is quite different in LiF and ZnO, where

Figure 2 reveals that LDA’s zeroth-order picture accounts
for less than 80% of the high-level wave function. At a
minimum, this implies that LDA’s VBM and CBM orbitals
are not the correct shape for the real exciton’s particle
and hole, a point we will return to in our discussion of
ZnO. Figure 2 also reveals that in these two systems, the
fraction of exact exchange can have a significant effect on
how closely DFT’s zeroth-order wave function matches the
VMC prediction. Although there are also the orbital
energies to consider (see ZnO discussion below), these
findings help explain why MBPT can be so sensitive to the
choices made in its practical application [41–43]. Work by
Sommer et al. [44] reveals that these issues can carry over

to the BSE approach, which fails to provide a satisfactory
correction to GW in LiF, although vertex-corrected sol-
utions to Hedin’s equations can help in that case [45,46].
Note that these issues do not necessarily imply a failure of
one-particle theory in these systems, as there may exist a
one-particle basis in which the true exciton really does look
like the simple VBM → CBM transition. Indeed, in ZnO,
to which we will now turn our attention, we will provide an
analysis showing that such a basis does indeed exist. Thus,
while Fig. 2 makes plain that commonly used density
functionals struggle to meet the needs of MBPT in both
ZnO and LiF, the insights gleaned from systematically
improvable wave function methods should help resolve this
difficulty in the future.
ZnO represents a particularly difficult case for MBPT,

especially when considering its low-order and highly
efficient G0W0 variant [15,41]. The left-hand side of
Fig. 3 makes clear that the accuracy of this low-order
perturbative treatment is highly sensitive to the inclusion of
exact exchange. In contrast, we see that the VMC-CISD
results are insensitive to whether we employ the LDA, the

FIG. 2. Here we investigate the appropriateness of various one-
particle orbital sets for MBPT by plotting the VMC-CISD
residual weight fraction, which we define as the sum of squared
CI coefficients on all configurations other than the primary
VBM → CBM transition when working in a particular orbital
basis. In cases where degeneracy in the VBM leads to multiple
equal-energy VBM → CBM configurations, the sum excludes all
such configurations.

TABLE II. ZnO band gaps and EBE in eV.

LDA 0.83
PBE0 3.03 [47]
G0W0-LDA 2.14 [15]
GW-LDA 3.20 [15]
G0W0-PBE0 3.24 [47]
VMC-CIS(LDA) 3.9(2)
VMC-CIS(PBE0) 4.6(2)
VMC-CISD(LDA) 3.9(2)
VMC-CISD(PBE0) 3.9(2)
Experiment 3.66 [48]
EBE 0.06 [49]

FIG. 3. Optical gap and single-particle transition energy data
for ZnO. On the left, we compare G0W0 fundamental gaps using
one-particle starting points that employ different fractions of
exact exchange with our VMC-CISD optical gaps based on the
same starting points. For the various i → a transitions, we plot on
the right histograms of the differences Dia ¼ ΔDFT

ia − ΔVMC
ia

between the DFT estimates (i.e., the orbital energy differences
ΔDFT

ia ¼ ϵa − ϵi) for the energy cost of promoting an electron
from orbital i to orbital a and the analogous quantities ΔVMC

ia ,
which are the VMC energy differences between the i → a excited
and the ground state Jastrow-modified Slater determinants.G0W0

data from Fuchs et al. [47]. Experimental result from Lauck and
co-workers [48].
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Perdew-Burke-Ernzerhof hybrid functional (PBE0), or even
the Hartree Fock (HF) one-particle basis sets. The reasons
for this success are twofold. First, the wave function was
designed so as to be able to approximate an orbital rotation in
order to counteract shortcomings in the startingDFTorbitals.
Indeed, if we remove this ability by removing the doubles
excitations from the excited state and the singles from the
ground state, the resulting VMC-CIS results are more
sensitive and less accurate overall, as seen in Tables I and
II. Second, VMC takes the issue of the DFT orbital energies
off the table entirely, as it directly evaluates the energy
expectation value of its wave function using the full ab initio
Hamiltonian so that the only dependence on DFT is via the
shapes of the one-particle orbitals.
Using our DFT-insensitive VMC methodology as a

guide, one can investigate how commonly used density
functionals’ zeroth-order pictures deviate from reality in
ZnO and whether it is even possible to construct a one-
particle picture upon whichMBPT should be reliable in this
material. First, we stress that, although Fig. 2 revealed that
G0W0’s sensitivity to exact exchange is likely due in part to
the varying quality of the zeroth-order wave functions, the
right-hand side of Fig. 3 emphasizes the importance of the
zeroth-order transition energies and how they are also quite
sensitive to exact exchange. By considering zeroth-order
wave functions and transition energies together, we gain an
appreciation for how challenging this system is for density
functional theory. Indeed, HF theory with its 100% exact
exchange gives better orbitals for the purpose of describing
the first excited state, but its transition energies are grossly
too high, whereas PBE0 has better transition energies but
worse orbitals. Among the three options of LDA, PBE0,
and HF, PBE0 clearly makes for the best compromise
between wave function and transition energy accuracies,
but our results suggest that both its energetics and orbitals
would be improved in ZnO with a higher fraction of exact
exchange.
With an explicit high-level wave function in hand, we

can ask highly detailed questions about the exciton, such as
to what degree the O 2p and Zn 3d orbitals hybridize in the
hole state. Indeed, metal-oxide overhybridization has been
pointed out as a key deficiency in LDA and other pure
functionals [41]. We approach this question by performing
a density matrix difference analysis [50] in which the
difference between the one-body density matrices of
our VMC-CISD excited and ground state is diagonalized.
As occurs for any excited state consisting of a single one-
particle transition of the type assumed in MBPT’s zeroth-
order picture [50], the resulting eigenvalues are all close to
zero (absolute values less than 0.1) except for one with a
value near 1 and one with a value near −1. The eigenvectors
corresponding to these two large eigenvalues are the
attachment and detachment orbitals, respectively, and
represent the particle and hole orbitals that most closely
represent the transition between a correlated many-body

ground state and excited state. By plotting the hole density
from this detachment orbital in the vicinity of the Zn atom,
alongside the hole densities predicted by the VBM of
different density functionals, Fig. 4 makes clear that,
compared to our high-level VMC results, LDA does indeed
include too much Zn character in the VBM through
overhybridization. More surprisingly, we see that although
LDAþ U [51], with theU value used previously [41], does
decrease the degree of hybridization, our detachment
density is even less hybridized, with LDAþU bringing
us only about halfway in between the LDA and VMC
extremes. Another important point that the detachment
orbital reveals is that some hybridization is definitely
present, just not so much as common density functionals,
even those specifically designed to address this issue,
predict.
Although it is frustrating that current functionals face

the various difficulties discussed above, the fact that the
VMC density difference analysis strongly resembles a
simple single-particle transition suggests that it should be
possible to design a functional that delivers an excellent
zeroth-order starting point for MBPT. To make this idea
more concrete, we can test whether such an orbital basis
exists by applying an orbital rotation to our wave function
(starting with the optimized VMC-CISD state in the
PBE0 orbitals) in order to minimize the residual weight
fraction of the exciton. As seen in Fig. 2, this rotated
PBE0 one-particle basis matches the assumptions of
MBPT in ZnO almost as well as the LDA basis does
for Si or diamond. This finding also serves to reassure us
that the error we do see in VMC-CISD’s optical gap
prediction (and its moderate disagreement with previous
projector Monte Carlo estimates [52–54]) is most likely
due to the imperfect nature of our finite size correction
rather than to the appropriateness of our wave function

FIG. 4. A cut along ZnO’s (1̄21̄0) plane in which we investigate
the lowest energy excitation’s hole density in the vicinity of the
Zn atom. For each method, we plot the contour along which the
number of holes per Å3 is equal to 1.2.

PHYSICAL REVIEW LETTERS 123, 036402 (2019)

036402-4



approach, as it validates the assumption that the excitonic
state is dominated by single-particle-hole transitions with
the doubles only contributing small corrections. While a
good one-particle basis is just a start (density functionals
must also produce reasonable zeroth-order transition
energies), the insights we now have from VMC paint a
bright picture for the prospects of increasing the accuracy
and reliability of MBPT in cases like ZnO.
We have shown that an excited state variational prin-

ciple can be combined with simple, physically motivated
wave function approximations to evaluate optical band
gaps in a way that is both insensitive to the DFT starting
point and informative about the assumptions of MBPT.
Given the dominant role that MBPT plays in the theo-
retical interpretation of materials spectroscopy, a method
that is able to improve its predictive power has the
potential to be highly impactful. Even in cases where
exciton-induced repolarization effects are large and it is
not possible to identify a density functional that yields
a one-particle basis appropriate for describing both the
ground and the low-lying conduction band states, the
ability to provide variational predictions of band-edge
energies, perhaps even in a k-point-by-k-point fashion,
would create the possibility of developing first-principles-
based scissors corrections for the BSE Hamiltonian,
a practice that at present can be quite effective when
performed empirically [49,55]. In molecular excitations,
variational excited states [20–23] and MBPT [56] have so
far been explored separately, but the same potential for
strong synergies is present. In both molecules and solids,
our approach also provides a reasonably black-box route
to producing high-quality nodal surfaces for excited states
in diffusion Monte Carlo, which even with less sophis-
ticated VMC preparations has already shown promise
in evaluating band gaps [54,57–61]. The prospects for
increased accuracy and scalability in this area are espe-
cially bright in light of recent progress in VMC methods
for optimizing the one-particle basis [62,63] and achiev-
ing compact representations of excited states [64,65],
not to mention the rapid progress in selective CI methods
that synergize strongly with multi-Slater VMC [66–73].
With this wide range of promising connections, we look
forward to further exploring the role that variational
approaches can play in deciphering and designing molecu-
lar and materials spectra.
Input and output files for our calculations are available

via the Materials Data Facility [74].
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