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In this Letter, we report on the effects of a vorticity filament on the coherent backscattering cone. Using
ultrasonic waves in a strongly reverberating cavity, we experimentally show that the discrete number of
loops of acoustic paths around a pointlike vortex located at the center of the cavity drives the cancellation
and the potential rebirth of the coherent backscattering enhancement. The vorticity filament behaves, then,
as a topological anomaly for wave propagation that provides some new insight between reciprocity and
weak localization.
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Coherent backscattering enhancement of waves by a
random medium provides convincing evidence of interfer-
ence effects despite disorder and multiple scattering. The
coherent backscattering cone (CBC) is manifested as a cusp
in the angular distribution of the backscattered intensity [1].
This universal phenomenon has been observed experimen-
tally at different spatial scales in optics [2], acoustics [3],
and seismology [4], and with elastic waves [5] and cold
atoms [6].
The CBC is considered to be a sign of weak localization

of waves that propagate in a disordered medium. The weak
localization originates from constructive interferences
between multiple scattering paths and their reciprocal
counterparts that follow the same sequence of scatterers
in reverse order. Indeed, only reciprocity breaking in the
propagation medium can alter the constructive interfer-
ences and destroy the enhancement [7]. Suppression of the
CBC by Faraday rotation of light in a multiple scattering
medium provided the first experimental evidence of the
disappearance of weak localization [8]. Evidence of CBC
destruction using acoustic waves in a rotational flow was
also reported [9]. The relation between reciprocity and
coherent backscattering enhancement was recently revis-
ited in the context of propagation of cold atoms in optical
speckles [10] or of light in optical fibers [11].
In this Letter, we go one step beyond the CBC destruc-

tion for acoustic waves by observing a coherent back-
scattering dip and by predicting the rebirth of the cone.
Compared to the reciprocity-breaking phase shifts induced
by solid rotation, which depends on the path lengths
distribution in the cavity, the topological anomaly created
by a vorticity filament quantizes wave transport properties:
the only physical parameter that drives the CBC cancella-
tion and its potential rebirth is the integer number of loops
of the conjugated paths around this topological singularity.
Note also that the interplay between topology and hydro-
dynamics is more general, e.g., a recent study of the

topological nature of some geophysical flows like the El
Niño phenomenon [12].
The experimental setup is shown in the inset of Fig. 1. A

cylindrical metallic cavity (diameter, 15 cm; height, 10 cm)
is filled with water. Two coplanar linear arrays T1 and T2 of
N ¼ 64 ultrasonic transducers centered at f ¼ 6 MHz are
placed face to face at the half-height of the cavity, and are
separated from each other by 2d0 ¼ 14.5 cm. Each
transducer of the array is L ≃ 10 mm high and dx ¼
0.75 mm ≃ 3λ wide, where λ is the ultrasonic wavelength.
A motor (Fig. 1 inset, M) drives a circular plate (diameter,
14 cm) that is positioned at the top of the cylinder, and
a pump (Fig. 1 inset, P) draws water through a hole
(diameter, 8 mm) in the center of the bottom surface of the

FIG. 1. Intensity of the acoustic wave emitted and received by
T1 as a function of time. Two specular reflections are visible. The
black vertical lines correspond to the propagation times of the
wave for the distances indicated. The gray domain corresponds to
a typical time window over which the CBC is measured. Inset:
The experimental setup.
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cylinder. In combination with the rotating plate, this creates
a single and stable vorticity filament with core radius r0 ∼ λ
[13]. Note that if the pump is turned off, the upper rotating
plate creates a solid rotation in the cylindrical cavity with a
typical dimension R ≫ λ [9,14]. In the first step, an
ultrasonic plane wave can be transmitted through the
vorticity filament by array T1, and the phase shift of the
direct incident plane wave induced by the flow can be
measured on array T2. As dx ≪ L, this makes the plane
wave propagate as a collimated beam that is perpendicular
to the vortex axis, with a relatively small extension along
the vortex direction. The experimental configuration is thus
close to the two-dimensional (2D) situation classically
investigated in theoretical papers.
In the literature, the use of transducer arrays has provided

spatial and dynamical characterization of rotating flows of
different sizes [13,15]. When the vortex size is large
compared to the ultrasound wavelength, the phase shift
is easily interpreted using geometrical acoustics, and it
yields a direct measurement of the vortex circulation, size,
and position. On the other hand, a vorticity filament (i.e.,
where the core size is smaller or comparable to the
ultrasonic wavelength) behaves as a pointlike scatterer in
two dimensions. Sound scattering by a single vorticity
filament has been intensively studied following the pub-
lication of the Lighthill classical theory of aerodynamic
sound [16–21]. Theoretical and analytical analyses have
been carried out to account for both sound scattering by the
vortex core and long-range refraction effects due to the
vortex flow [22,23].
In 2D calculations, the scattered pressure field ψ is

analogous to the classical quantum mechanics problem of a
beam of charged particles incident on a magnetic field tube,
a problem known as the Aharonov-Bohm effect [24,25].
This formal analogy with quantum mechanics was first
introduced by Berry et al. [26], who studied experimentally
the scattering of surface waves by a bathtub vortex [27].
The signature of the ultrasound scattering by a single vortex
was experimentally observed by Roux et al. [13], who
reported that the analytical calculations based on the
quantum analogy also hold for acoustics.
In practice, the vorticity filament is located at the

center of the cavity around x ¼ 0. The phase shift due
to the wave-vorticity interaction on the transmitted signal
between T1 and T2 is shown in Fig. 2 for each of the
transducers of the array T2. Roux et al. [13] showed that the
phase jump and the phase oscillations are well described by
the wave function predictions of the quantum Aharonov-
Bohm effect [25]

ψαðρ; θÞ ¼
X∞

m¼−∞
exp

�
−i

π

2
jm − αj

�
Jjm−αjðkρÞeimθ; ð1Þ

where the origin of the polar coordinates ðρ; θÞ is the
vorticity filament, the angle θ is counted from the

backscattering direction (see setup scheme in Fig. 1),
and k ¼ 2π=λ is the wave number.
The acoustic parameter α can be deduced from the

quantum mechanics analogy α ¼ Γ=λc, c is the sound
speed, and Γ is the flow circulation. The fitting procedure of
the curves is described in the Supplemental Material
[28,29] and is shown in Fig. 2. The extracted α are plotted
as a function of the angular velocity of the upper circular
plate in Fig. 2(a). For comparison, we measured the same
quantity when the pump was turned off, i.e., for solid
rotation of the water: linear dependency of the phase was
measured along the array [see Fig. 2(b)], as expected by the
radial velocity profile in the cavity for a solid rotation core
larger than the array size.
To measure the coherent backscattering effects in the

cavity, a plane wave is now emitted from array T1, and the
strongly reverberated and backscattered wave field is
recorded on the same array. To increase the random
scattering properties of the cylindrical cavity in the 2D
propagation plane, a rough stainless steel sheet covers the
inner boundary of the cylinder. The role of the rough
metallic sheet is to scatter the incident ultrasonic wave field
and diminish the amplitude of the specular reflections, to
obtain a quasi-2D cavity with rough boundaries. The
intensity of a typical backscattered signal is shown in
Fig. 1. To further avoid the contributions of specular
reflections (i.e., the peaks in Fig. 1), we choose to record
the signal over δt ¼ 0.1 ms after a travel time chosen
between 1.2 and 1.8 ms (e.g., the gray region in Fig. 1
corresponds to such a typical time window). Following a

(b)

(a)

FIG. 2. Phase shift for the transmitted signal between T1 and T2

induced by a vorticity filament measured as a function of the
rotation speed of the motor (color coded) at a given pump flow
(0.06 L s−1). The measurements are fitted to Eq. (1) to extract the
vorticity parameter α of the vortex (solid lines). Inset (a): The
fitted vorticity parameter α for the data plotted in the main figure
as a function of the rotation speed of the upper circular plate. Inset
(b): Phase shift for the transmitted signal between T1 and T2

induced by a solid rotation (i.e., pump turned off).
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method introduced by Aubry et al. [30], we then perform
plane wave beam forming to recover the ultrasonic beams
received in the directions around the incident plane-wave
direction, with the power then calculated for the chosen
time window. Compared to earlier pointlike measurements
of the CBC [9,15] from an ultrasonic linear array, beam
forming improves by a factor of 2 with the present array
geometry both the signal-to-noise ratio of strongly dis-
persed signals and the angular resolution of the intensity
distributions.
To measure the CBC, there is the need to average over

the disorder. In optics, this is achieved automatically in
colloidal dispersions, and dry samples need to be moved to
average over the speckles. Here, the cylindrical cavity has a
fixed disorder that is given by the roughness of the metallic
walls, and the positions of the transducers are fixed.
Averaging over disorder can nevertheless be achieved by
steering incident plane waves in different directions (typ-
ically every 0.5° from −10° to 10°), and by beam forming
the received wave field around each incident angle. The
intensity averaged over the different incident directions
IðθÞ is then normalized outside of the main peak by its
average value for 1° < jθj < 10°. Such normalized inten-
sities are shown in Fig. 3. Note that the CBCs are measured
here in a cavity with a typical width for the peak of
λ=ðNdxÞ (near field cone [5,31]), which is close to the
angular resolution of the ultrasonic array.
The darkest CBC in both panels of Fig. 3 are measured

without any flow in the cavity. In this case, the wave
propagation obeys the reciprocity, and the enhancement

factor (i.e., the value of the normalized intensity at 0°) is
expected to be 2. However, this is not the case here, where
the enhancement factor is about 1.7, which is explained by
the diffraction-limited 3λ width of each transducer element.
In the following, we define the normalized enhancement
factor as EN¼ ½ðE−1Þ=ðEmax−1Þ�þ1, Emax ≃ 1.7, which
is the value of E without any flow.
The other CBCs of Fig. 3 were measured with either

solid rotation (left panel: upper plate turning, pump off) or a
vorticity filament (right panel: upper plate turning, pump
on). The colors encode the rotation speed of the upper plate,
and correspond to the colors of the points in the inset. In
both cases, the normalized enhancement factor decreases as
a function of the rotation speed, as a signature of broken
reciprocity [8]. However, in the inset of Fig. 3, the
normalized enhancement factor decreases more rapidly
when there is a vortex filament in the cavity (×), with
respect to the case of solid rotation (þ) for the same finite
rotation speed. An interesting feature is the presence of a
dip instead of a peak for the CBC at large rotation speed for
the vorticity filament. This will be explained later in the
Letter.
The CBC shape depends on the path distributions inside

the reverberating cavity. In the case of solid rotation (þ),
the radial velocity profile is v⃗ ¼ Ωru⃗θ, and the dephasing
between the counterpropagating paths is

Δφ ¼ 4π

λc

I
v⃗ · d⃗l ¼ 4π

λc
AΩ; ð2Þ

where Ω is the vorticity field and A is the area enclosed by
the conjugated paths. The phase shift Δφ is then path
dependent. Through calculation of the statistical properties
of A for randomly scattered paths in a cavity, de Rosny
et al. [15] provided an expression for the enhancement
factor as a function of the solid rotation,

EðΩÞ ∝ exp

�
−
π3R3t
λ2c

Ω2

�
; ð3Þ

where R is the radius of the solid rotation flow, t is the travel
time at which the measurements were carried out, and Ω is
the vorticity of the flow. For the present geometry,
Lehmkuhl and Hudson [14] experimentally measured the
relation between Ω and the rotation frequency f0 of the
upper circular plate, as Ω ≃ 0.3f0. In the case of solid
rotation, we fit the normalized enhancement factors EN as a
function of f0 by a Gaussian curve [Eq. (3), Fig. 3 inset,
solid line]. The only fit parameter—R ¼ 4 cm—has an
acceptable value in the case of solid rotation in terms of
boundary conditions associated with the cavity size and the
flow measurements shown in Fig. 2(b). However, if we now
perform the same Gaussian fit on the EN measurements
with a vorticity filament (×, dashed curve in Fig. 3), the fit
parameter—R ¼ 10 cm—is not compatible with the vortex

N

FIG. 3. Coherent backscattering cones measured with solid
rotation (left, no pump), and measured with a vorticity filament
(right, pump imposing a flow of 45 mL s−1). Similar rotation
speeds (color coded) were used without and with the pump. The
darkest curves on both sides show the same measurements
realized without any flow. Inset: Normalized enhancement factor
EN of the backscattering cones measured with solid rotation (þ)
and with a vorticity filament (×), as a function of the rotation
speed of the upper plate.
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core size (comparable to the ultrasonic wavelength).
This indicates that the different nature of both flows must
fundamentally change their phase shift characteristics
for strongly reverberated acoustic paths in the cavity. In
the following, we highlight the fundamental difference
between solid rotation and vorticity filament flows, from
the CBC point of view.
For a vorticity filament, the radial velocity profile is

v⃗ ¼ Γ=ð2πrÞu⃗θ, which leads to a phase shift between
counterpropagating paths [Eq. (2)]

Δφ ¼ 4π

λc
nΓ ¼ 4παn: ð4Þ

In our experimental configuration, the Aharanov-Bohm
parameter α results from the combination of the rotation
speed of the upper plate, the flow imposed by the pump,
and the frequency of the acoustic wave [Fig. 2(a)]. The
striking result here is the topological stability of the phase
difference: Δφ depends solely on the discrete number of
loops n around the vortex core, independent of the path
trajectory, in agreement with the Aharanov-Bohm predic-
tion. The phase shift acquired between two counterpropa-
gating paths in the cavity in the presence of a vorticity
filament [Eq. (4)] imposes the normalized intensity of the
interference between these in the backscattering direction
as 1þ cosΔφ.
Defining pn as the probability distribution of the number

of loops n around a given point in the cavity for closed
paths—which is independent of the presence of the
vorticity filament if the contribution of the field scattered
by the vortex core is ignored—the enhancement factor E is
then expected to be

EðαÞ ¼
X
n∈N

pn½1þ cosð4πnαÞ�: ð5Þ

We assume a Poisson distribution for pn in agreement with
the fact that loops occurring in a fixed time interval
(corresponding to closed trajectories with a given path
length) are rare events with an average probability that solely
depends on the rough cavity geometry. (This assumption is
supported by numerical simulations of the number of loops
done by closed paths in a 2D reverberating rough cavity,
see Supplemental Material [28].) We therefore write
pn ¼ βne−β=n!, where β ¼ hni is the average number of
loops n within a given travel time interval. It follows

EðαÞ ¼ 1þℜfexp ½βðe4iπα − 1Þ�g: ð6Þ

Figure 4(a) shows the values of the normalized enhance-
ment factors EN as a function of α for different travel times,
corresponding to different path lengths inside the cavity.
Despite experimental dispersion explained by the uncer-
tainty on the values of Emax used to compute EN, the
measurements are in good agreement with theoretical

prediction of Eq. (6), from which the average loop number
can be extracted. As expected, β linearly increases with
travel time [inset in Fig. 4(a)].
The model confirms the presence of a cone dip EðαÞ < 1

at intermediate values of α (see Fig. 3, right panel, yellow
curve). The model also predicts that EðαÞ is 0.5 periodic as
shown in Fig. 4(b). In particular, the value Eðα ¼ 0.5Þ ¼ 2
corresponds to a surprising rebirth of the CBC in the
absence of reciprocity which is a major difference com-
pared to solid rotation, where E strictly decreases to 1
for increasing rotation speed [15], and compared to the
effects of Faraday rotation in optics [8], where E also
irremediably decreases to 1 when the external magnetic
field is increased.
However, can the “rebirth” of the CBC be obtained with

realistic experimental configurations? To answer this ques-
tion, we assume a vortex core size r0 ∼ λ and a maximum
flow velocity Umax, which leads to Γ ¼ 2πr0Umax, and thus
α ¼ 2πðr0=λÞðUmax=cÞ ∼ 2πMa, where Ma ¼ Umax=c is
the flow Mach number. Values of the vorticity parameter
α ¼ 0.5 then induce Ma ∼ 0.1, which is impossible to
achieve in water because of the appearance of cavitation
bubbles in the vortex core, which slow down the flow
velocity. However, Ma ∼ 0.1 might be reachable with one
single vorticity filament in a medium with lower sound
velocities, such as air [32], second sound in superfluid
helium [33], or in ultracold atomic gases [34].
To conclude, we have shown in this Letter how a

vorticity filament behaves as a topological anomaly for

(a)

(b)

N

FIG. 4. (a) Enhancement factor of the coherent backscattering
cone as a function of the vorticity parameter α for different travel
times. Each color corresponds to a travel time, and the corre-
sponding theoretical curve is plotted in the same color. For the
sake of clarity, the three plots have been translated by α ¼ 0.01.
Inset: Plot of the average loop number β with respect to travel
time. (b) Predictions of the theory on a larger vorticity parameter
range exhibiting a rebirth of the CBC for α ¼ 0.5.
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wave propagation that “counts” the number of loops made
by long acoustic paths around it. Consequences of the
topological stability of the phase difference between
counterpropagating paths are (1) the coherent backscatter-
ing dip experimentally observed for α≳ 0.1 and (2) the
prediction of the rebirth of the coherent backscattering cone
for α ¼ 0.5 under strongly reciprocity-breaking conditions.
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