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Spontaneous emission and scattering behavior of an emitter or a resonant scatterer strongly depend on
the density of states of the surrounding medium. It has been shown that the resonant scattering cross section
(RSC) may diverge at the Weyl frequency of a type I Weyl system due to the diminishing density of states.
Here we study the spontaneous emission (SE) and RSC in a photonic metacrystal across the critical
transition between type I and type II Weyl systems. Theoretical results show that the SE rate of an emitter in
a type I Weyl system diminishes to zero at the Weyl frequency. When the system is tuned towards the
transition point between type I and type II Weyl point, the dip in the SE spectrum at the Weyl frequency
becomes infinitely sharp. The dip vanishes at the critical transition, and transforms into a peak when the
system changes into a type II Weyl system. We further show that the resonant scattering cross section also
exhibits dramatically different spectral features across the transition. Our study demonstrates the ability to
tune SE and RSC through altering the dispersion of the Weyl medium between type I and type II, which
provides a fundamentally new route in manipulating light-matter interactions.
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Spontaneous emission (SE) is of great importance to
many applications from light-emitting devices to biological
and medical imaging. The rate of SE is determined by the
electromagnetic interaction between an atom and a quan-
tum field, which can be tuned by varying the electromag-
netic environment of the source [1,2]. Modification of SE
in photonic environments can be implemented in photonic
crystals [3–6], nanoscale cavities [7,8], plasmonic nano-
structures [9,10], and metamaterials [11,12]. In an atomic
system, the rate of SE is closely related to its cross section
of resonant scattering, as both are strongly dependent on
the density of states (DOS) of the optical environment.
Topological phases such as topological insulators and

topological semimetals have been extensively studied in
condensed matter physics because they support edge states
or surface states that are immune from scattering [13,14].
These novel concepts have been recently extended to
classical systems such as photonics and acoustics [15,16].
In photonics, photonic structures such as photonic crystals
[17,18] and metamaterials [19] that support nontrivial
topological surface states have been studied both in theory
and experiment. Besides photonic analogs of topological
insulators, three dimensional photonic crystals and meta-
materials that support Weyl points have been proposed
and realized [20–24]. Weyl points are linear crossings
between two bands at isolated points in the three dimensional
momentum space or synthetic space. They can be viewed as
monopoles of quantized monopole charge in the momentum

space, acting as sources or drains of the Berry curvature, with
the sign of the monopole charge determined by the Weyl
point’s chirality. Depending on the DOS at the Weyl
frequencies, Weyl systems can be categorized as type I with
a diminishing DOS and type II with a finite DOS [25,26].
Because of this dramatic difference, it is expected that DOS
relatedphenomena such asSEand resonant scattering exhibit
very different behaviors in these two types of photonic Weyl
systems. In this work, we design a realistic Weyl metama-
terial whose Weyl degeneracies can be continuously tuned
from type I to type II across the critical transition and
investigate the behavior of SE and the resonant scattering
cross section (RSC) across this transition. It is found that the
SE spectrum transits from a dip in type I into a peak in type II,
while the diverging RSC in a type I Weyl system turns into a
minimum at the Weyl frequency in a type II system. Across
the transition between type I and type II, extremely sharp
spectral features are present for the SE, which may be
employed for sensing applications.
We start by considering an ideal Weyl system consisting

of a number of Weyl points located at exactly the same
frequency, which are related to each other through sym-
metry operations [27]. Using the two degenerate modes
at the Weyl points as the basis, the general effective
Hamiltonian close to each Weyl point can be expressed as

Heff ¼ Nxkxσx þ Nykyσy þ Nzkzσz þ TxkxI; ð1Þ
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where σx;y;z are Pauli matrices, I is a 2 × 2 identity matrix,
Nx;y;z are the Fermi velocities, and Tx is the tilted velocity
of the Weyl point along the x direction. The tilting of the
Weyl dispersion cone is determined by the Weyl parameter
αWeyl ¼ Tx=Nx, with αWeyl < 1 corresponding to a type I
Weyl system, and αWeyl > 1 corresponding to a type II
Weyl system [28]. Both types of Weyl points are topo-
logically nontrivial, but they possess a different DOS,
which is expressed as DOSWeyl ∝ ∬ 1=jvkjd2k [29–31].
The DOS is directly related to the area of isofrequency
surface. Figure 1 shows the transformation of the isofre-
quency surface for different Weyl parameters αWeyl with
(a) αWeyl ¼ 0.5–0.9, corresponding to a type I Weyl point
with frequency fixed as ω ¼ 0.9ωWeyl, and (b) αWeyl ¼
1.1–1.5, corresponding to a type II Weyl point with
frequency ω ¼ ωWeyl, respectively. For simplicity, only
the interception of the isofrequency surface with the
kx-ky plane is plotted, while the 3D isofrequency surface
can be visualized by rotating this 2D plot along the kx axis.
As shown in Fig. 1(a), the isofrequency surface of the wave
vector is elliptical for the type I Weyl point, and it gradually
expands when αWeyl approaches unity, which corresponds
to the critical transition. The length of axis of the elliptical

isofrequency surface along the kx, ky, and kx direction is
expressed as ω̃=½Nxð1 − α2WeylÞ�; ω̃=½Nyð1 − α2WeylÞ1=2�, and
ω̃=½Nzð1 − α2WeylÞ1=2�, respectively, where ω̃ ¼ ω0 − ωWeyl.
When approaching the critical transition of the Weyl point,
the kx axis increases much faster than ky and kz, leading to
an extremely elongated elliptical isofrequency surface. For
the type II Weyl point shown in Fig. 1(b), the isofrequency
surface turns into two cones with a point contact at the
Weyl frequency, the opening angle θopen of the hyperbolic
isofrequency cones increases with αWeyl increasing, which
follows the relation of θopen¼2tan−1½ðα2Weyl−1Þ1=2Nx=Ny�.
The corresponding DOS for a type I and type II Weyl

medium is shown in Figs. 1(c) and 1(d), respectively.
Transformation of DOS of a type I Weyl system can be
expressed as DOSWeyl ∝ 4πω̃2=½NxNyNzð1 − α2WeylÞ2� (see
Sec. I in Ref. [32]). The analytical form shows the DOS in a
type I Weyl system (Nx > Tx) diminishes when approach-
ing the Weyl frequency. When αWeyl increases towards
unity, i.e., approaching the critical transition of the Weyl
point, the width of valley in the spectrum of DOS is
dramatically reduced, while its minimum remains zero at
the Weyl frequency, resulting in extremely sharp spectral
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FIG. 1. Transformation of the isofrequency surface of a type I (a) and type II (b) Weyl point according to a different Weyl parameter
αWeyl in the kx-ky plane. (c) and (d) The transformation of density of states in type I and type II Weyl systems with different αWeyl,
respectively.
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feature in Fig. 1(c). The characteristics of DOS spectra in
type I Weyl system can be understood based on the
isofrequency surface of Weyl points, which has an elliptical
shape. When approaching the Weyl frequency, the ellipsoid
shrinks and becomes a point at the Weyl frequency, and
consequently the DOS (also the local DOS) decreases to
zero, which would result in a diminishing SE.
In the calculation of DOS in type II Weyl system, we

impose a two dimensional truncation in the momentum
space that is perpendicular to the axis of hyperbolic
isofrequency surface with kt ¼ ωWeyl=c away from the
Weyl point to constrain it from divergence, where c is the
speed of light in vacuum. This truncation can be understood
as a consequence of the finite size of the Brillouin zone in
any realistic systems. The isofrequency surface of both type
I and type II Weyl system becomes extremely narrow close
to the transition point. Interestingly, for a type II Weyl
system, the DOS spectra show the opposite trend as that of
the type I system. As shown in Fig. 1(d), when approaching
theWeyl frequency, the DOS is enhanced and forms a peak.
With decreasing αWeyl in type II Weyl regime, the Lorentz
peak at theWeyl frequency becomes stronger. The extremely
enhanced DOS indicates an enhanced SE in type II Weyl
system at the Weyl frequency close to the critical transition,
which may be exploited for laser applications.
Next we consider a two-level atom embedded inside the

Weyl system, which emits light into the Bloch modes of the
Weyl structure. The atom can be considered as a dipole of
oscillation frequency ω0. In the weak coupling regime, the
radiating power P is given by the summation over emis-
sions into all the Bloch modes with different wave vector k
across the isofrequency surface [33,39,40]

P ¼ πω2
0

4ε0

ZZ jd · ukðr0Þj2
jvkj

d2k; ð2Þ

where vk ¼ ∇kωk is the group velocity of the eigenwave,
ε0 is the vacuum permittivity, d is the dipole moment,
ukðr0Þ are the eigenmodes of the Weyl system, and r0 is
the atom location (see Sec. II in Ref. [32]). The SE rate
ΓWeyl is related to the emitted power P by ΓWeyl ¼ P=ℏω0.
Equation (2) reflects the modification of SE due to the
optical environment in the steady-state limit, which corre-
sponds to the Weisskopf-Wigner approximation in the
quantum theory of the SE of a two-level atom in an
inhomogeneous medium [34,41]. It is convenient to char-
acterize the SE rate of the Weyl system ΓWeyl by a
dimensionless quantity, the Purcell factor PWeyl, which is
normalized by the rate of SE in free space Γ0 as PWeyl ¼
ΓWeyl=Γ0. According to Fermi’s golden rule, the Purcell
factor is proportional to the local photonic density of states
in the surrounding Weyl system.
To quantitatively explore the SE of the Weyl medium

across the transition between type I and type II, one needs

to have the complete information of the eigenmode ukðr0Þ
of the system, which entails the knowledge of the detailed
design of the metamaterial. The realistic design of a
photonic Weyl medium that can transit from type I to type
II is based on the recent discovery of ideal Weyl degen-
eracies in a photonic metamaterial [27], in which all the
Weyl points exist at the same energy and are well separated
from any other bands. The ideal photonicWeyl metacrystal,
being type I, possesses exact diminishing DOS and local
DOS at the Weyl frequency. Figure 2(a) shows the structure
of the ideal photonic Weyl metacrystal, which comprises of
a saddle-shaped connective metallic coil that possesses
D2d point group symmetry in the tetragonal lattice. The
unavoidable crossing between the longitudinal mode (LM)
with negative dispersion and the transverse modes (TM)
with positive dispersion in the metacrystal leads to the
presence of type I Weyl points. The other three Weyl points
are located on the Γ −M at the same frequency with respect
to kz ¼ 0 [Fig. 2(b)].
Interestingly, by rotating the metallic coil inside the

cubic unit cell of the ideal photonic Weyl metacrystal about
the z axis [Fig. 2(a)], we observe a continuous transition of
the dispersion of LM of the Weyl metacrystal from negative
to positive, as shown in Fig. 2(c), which indicates a
transition from a type I Weyl system to a type II Weyl
system. This transition arises from the variation of the
spatial nonlocal effect. The location of the Weyl point also
rotates with the rotation of the structure, which forms an
angle θ with the Γ −M direction (wave vector along
kx ¼ ky). The dispersion of the Weyl metacrystal along
the Weyl vector kWeyl with different rotation angles of 0°,
45°, and 34° are shown in Figs. 2(d)–2(f). As shown in
Fig. 2(d), without rotation, the two bands of TM and LM in
the Weyl metacrystal have opposite dispersion along
Γ −M; their crossing forms a type I Weyl point.
Dispersion of the Weyl metacrystal with a rotation angle
of 45° is shown in Fig. 2(e). In this case, both the
dispersions of the TM and LM modes are positive at the
Weyl point, indicating that the Weyl point is type II.
The critical transition of the Weyl point corresponding to
αWeyl ¼ 1 occurs at a rotation angle around 34.1°, which
shows a flat dispersion for the LM as shown in Fig. 2(f).
The finite size of the unit cell imposes a boundary that

sets a three dimensional bound to the isofrequency surface
in the Weyl system. Because of the spatial variation of
the eigenmodes of the structured Weyl medium, the SE rate
of an atom in the Weyl metacrystal is proportional to the
local DOS of Weyl metacrystal, which is position depen-
dent. Here we analyze the average SE rate for the atom
position varied over the whole unit cell of the Weyl
metacrystal based on the numerically acquired spatial
distribution of the eigenmodes. Transformation of the
average SE rate in the ideal Weyl metacrystal is illustrated
by Fig. 3. As shown by Fig. 3(a), for a type I Weyl
metacrystal, the SE spectrum exhibits a dip reaching zero
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at the Weyl frequency. When the rotation angle is increased
towards the transition angle, the width of the valley is
reduced, leading to an extremely sharp spectral feature
[Fig. 3(c)]. When the rotation angle exceeds the transition
angle (θtran ≈ 34.1°), the Weyl metacrystal transits into type
II, which leads to the vanishing of the valley and the
formation of a resonant peak at the Weyl frequency
[Fig. 3(b)]. The above observations are consistent with
the analysis of the DOS based on the effective Hamiltonian
shown in Fig. 1. The analysis demonstrates that the DOS

of the Weyl system provides a good approximation for the
general transformation of the averaged SE rate of a Weyl
metacrystal.
Similar to SE, scattering of the electromagnetic wave by

a resonant scatterer also critically depends on the isofre-
quency surface of the surrounding medium [42–44]. We
consider a two-level system (TLS) of atoms embedded in
the Weyl metacrystal. The TLS is initially in its ground
state, the incident photon is an eigenmode of the Weyl
medium, which is scattered by the TLS to all the eigenmodes
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background medium with a dielectric constant of 2.2 at 10 GHz. The metallic coil rotates with an angle of 45° along the z direction.
(b) Four type I Weyl points in the ideal photonic Weyl metacrystal reside on the same energy with respect of kz ¼ 0 (purple plane).
(c) Variation of the Weyl parameter αWeyl with rotation angle; the critical transition of the Weyl point from type I to type II occurs at a
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of the Weyl metacrystal. The scattering cross section of a
resonant scatterer in the photonic Weyl structure is obtained
by (see Sec. III in Ref. [32]):

σðk;ω0Þ ¼
1

2ℏε0
jd · ukðr0Þj2

ωk

jvkj
ΓWeyl

Γ2
Weyl=4þ ðωk − ω0Þ2

:

ð3Þ

The scattering cross section in the Weyl system averaged
across the isofrequency surface can be obtained by inte-
grating the cross section on the isofrequency surface, and
divided by the area of the isofrequency surface [35–37]:

σ̄ðω0Þ ∝
1RR
d2k

Γ2
Weyl=4

Γ2
Weyl=4þ ðωk − ω0Þ2

; ð4Þ

where ∬ d2k ¼ SWeyl is the area of isofrequency surface of
the Weyl medium. Equation (4) shows that the spectral
dependence of scattering cross section in Weyl system is
similar to the well-known Breit-Wigner formula [38].
It should be noted from Eq. (4) that when the transition
frequency of the two-level atom is the same as the Weyl
frequency ωk ¼ ω0, the average scattering cross section is
independent of the dipole polarization and location in the
metacrystal, but only related to the area of the isofrequency
surface of Weyl system.
Figure 4 shows the transformation of RSC around the

transition between type I (a) and type II (b) Weyl meta-
crystals, numerically calculated by full wave simulation.
The scattering cross section is normalized by the average
cross section in free space σ0 ¼ λ2=π. It shows for a type I
Weyl system, when approaching the Weyl frequency, the
resonant scattering cross section is enhanced and finally
diverges at the Weyl frequency [Fig. 4(a)]. The spectrum of
RSC of the type I Weyl system exhibits a typical Lorentz
line shape with bandwidth characterized by the SE rate. The
RSC is extremely enhanced around the Weyl frequency,
which comes at the price of the suppressed cross section

slightly away from the resonant frequency. The area of
isofrequency surface of the type I Weyl system close to
the critical transition can be asymptotically described
as SWeyl ≈ 3.11πω̃2=½NNxð1 − α2WeylÞ3=2�, where we have
assumedNy¼Nz¼N for simplicity (see Sec. I in Ref. [32]).
The area of the isofrequency surface diverges at the critical
transition of the Weyl point. The average resonant cross
section is inversely proportional to the area of isofrequency
surface of the Weyl system, which scales as σ̄ðω0Þ ∝
1=SWeyl ∝ ð1 − α2WeylÞ3=2=ω̃2. This expression explains the
extremely narrow RSC spectrum close to the critical tran-
sition [green curve in Fig. 4(a)].
On the contrary, due to the enhanced area of isofrequency

surface of the type II Weyl metacrystal, the spectrum of
RSC exhibits a dip around the Weyl frequency, and reaches
the minimum right at the Weyl frequency (see Sec. IV in
Ref. [32]). Further away from the critical transition point in
the type II regime, the dip on the RSC spectrum becomes
more broadened and lower [Fig. 4(b)]. Thus our study shows
that the RSC of a type I and type II Weyl system exhibits
opposite scattering features around the Weyl frequency,
while the conversion of scattering cross section from peak
to dip can be simply realized by tuning the rotation of the
metallic coil in the ideal Weyl metacrystal, which shows
exceptional flexibility and potential applications in manipu-
lating wave-matter interactions.
In this work, we have studied the behaviors of SE and

RSC in photonic Weyl metamaterials across the transition
between type I and type II. Both SE and RSC show
opposite features in type I and type II Weyl systems,
whereas close to the transition point very sharp spectral
features are present. Our analysis shows that the topological
transformation of isofrequency surface of Weyl system
plays the major role in such sharp features. Our findings
on efficient modification of SE and scattering cross section
in Weyl system provide rich potential applications in the
photodetector with single frequency, high efficiency Weyl
laser with tunable resonant frequency, etc.
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