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We show how, upon heating the spin degrees of freedom of the Hubbard model to infinite temperature,
the symmetries of the system allow the creation of steady states with long-range correlations between η
pairs. We induce this heating with either dissipation or periodic driving and evolve the system towards a
nonequilibrium steady state, a process which melts all spin order in the system. The steady state is identical
in both cases and displays distance-invariant off-diagonal η correlations. These correlations were first
recognized in the superconducting eigenstates described in Yang’s seminal Letter [Phys. Rev. Lett. 63,
2144 (1989)], which are a subset of our steady states. We show that our results are a consequence of
symmetry properties and entirely independent of the microscopic details of the model and the heating
mechanism.
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Introduction.—Driving and dissipation have recently
emerged as transformative tools for dynamically evolving
quantum systems into nonequilibrium phases with desir-
able properties [1–3]. In the context of strongly correlated
many-body systems, these tools can drastically alter their
microscopic behavior and manifest a variety of collective
and cooperative phenomena at the macroscopic level.
Controlled dissipation, for example, has been shown to

be a versatile resource for quantum information and
simulation purposes [4,5]. Recent proposals show how,
in ultracold atomic systems, Markovian baths which act
quasilocally can drive the system towards pure steady states
with exotic properties such as superfluidity [6,7]. These
schemes, however, rely on precise engineering of the
Lindblad jump operators in order to target specific states
and avoid the system heating up to a generic thermal
ensemble.

Meanwhile, significant interest has been generated by
the superconducting-like states that have been induced in a
variety of materials by transient excitation of the vibrational
degrees of freedom (d.o.f.) using terahertz laser pulses
[8,9]. These optically driven systems are often modeled via
Floquet driving—where the Hamiltonian is subject to a
time-dependent periodic field [10–12]. Through careful
choice of the driving parameters the effective Hamiltonian
can be modified, on comparatively short timescales, to one
which favors superconductivity, and so the system may

transiently reach a superconducting prethermal state.
However, Floquet heating [13–15] means that in most
cases these systems continue to absorb energy from the
driving field, heating them up and eventually destroying
any superconducting order present.
In this Letter we show that, counterintuitively, the

interplay between symmetry and heating can actually lead
to the formation of steady states with coherent, long-range
correlations. This heating can be achieved either with
dephasing or with periodic driving and, as the generation
of these correlations is based on symmetry, the microscopic
details of the heating mechanism are unimportant. We
believe this could mark an important step in explaining why
such states are being observed in experiments [8,9] where
the stringent conditions required in previous numerical
work [10–12,16] are not fulfilled.
In the aforementioned steady states we demonstrate how

the formation of these long-range correlations results from
the melting of all order in the complementary symmetry
sector where the heating is applied. The competition
between different types of order is a mechanism considered
to underpin the formation of transient superconductivity
[17,18] and thus we focus our work within this context.
Specifically, we apply driving or dephasing induced

heating to the spin d.o.f. of bipartite D-dimensional
realizations of the Hubbard model, melting any order in
this sector, and reaching robust mixed states with com-
pletely uniform long-range correlations between η pairs.
This pairing is known to provide a possible mechanism for
superconductivity [18–21]. Compared to previous propos-
als, which excite η-paired states through carefully tuned
driving or dissipation [6,16], our results are based on
symmetry arguments. This means that the engineered
steady states are independent of the model parameters
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and, for arbitrary initial states, guaranteed to have com-
pletely uniform η correlations. In the case of dephasing we
prove the results of our simulations by block diagonalizing
the Liouvillian superoperator, giving an explicit parametric
form for the steady states.
Model.—The Hubbard model, in second quantized form,

reads

H ¼ −τ
X

hiji;σ
ðc†σ;icσ;j þ H:c:Þ þU

X

i

n↑;in↓;i; ð1Þ

where c†σ;i and its adjoint are the usual creation and
annihilation operators for a fermion of spin σ ∈ f↑;↓g
on site i. Additionally, nσ;i is the number operator for a
particle of spin σ on site i, and τ and U play the role of
kinetic and interaction energy scales, respectively. In this
work, we set ℏ ¼ 1.
The Hamiltonian in Eq. (1) has a rich structure due to the

two SU(2) symmetries it possesses [22]. The first of these is
the “spin” symmetry, which relates to spinful particles
(singlons) σ ∈ f↑;↓g. The second, often referred to as “η
symmetry,” is central to this Letter and relates to spinless
quasiparticles (doublons and holons) σ ∈ f↑↓; vacg. It can
be interpreted as a type of particle-hole symmetry. This η
symmetry is revealed by introducing the associated oper-
ators,

ηþ ¼
X

i

ηþi ¼
X

i

ð−1Þic†↑;ic†↓;i;

η− ¼
X

i

η−i ¼
X

i

ð−1Þic↓;ic↑;i;

ηz ¼
X

i

ηzi ¼
X

i

1

2
ðni;↑ þ ni;↓ − 1Þ; ð2Þ

with ηþi (η−i ) describing the creation (annihilation) of a
doublon on site i with an alternating site-dependent phase.
The operators in Eq. (2) fulfill the relations ½H; η�� ¼ 0 and
½H; ηþη−� ¼ ½H; ηz� ¼ 0 and commute with all the gener-
ators of the spin symmetry.
The presence of η-pairing superconductivity in the

Hubbard model is a phenomenon first recognized by
Yang in his seminal Letter [23]. There it was proved that
the pure states jψi ∝ ðηþÞN jvaci are eigenstates of H and
possess off-diagonal long-range order (ODLRO) in the
form of doublon-doublon correlations,

Trðρηþi η−j Þ ¼ const ∀ i; j; i ≠ j; ð3Þ

where ρ ¼ jψihψ j. This relation provides a possible def-
inition of superconductivity, as a finite value of this
quantity can be shown to imply both the Meissner effect
and flux quantization [19,24,25]. These states, however, are
excited states ofH, and the long-range order they possess is
not usually seen in physical states (ground states, thermal

states, etc.) of the model due to destructive interference
from the short-range coherences involving spinful particles.
By driving the Hubbard model in the spin basis these are
destroyed and we can consistently engineer states with
long-range uniform correlations in hηþi η−j i.
As our primary mechanism for achieving this we

consider the Hubbard model immersed in an environment
which induces local dephasing in the spin basis. This model
is motivated by the spin fluctuation theory of supercon-
ductivity, where electrons pair due to their scattering on
spin fluctuations [26–28]. Our dephasing mimics these
scattering events.
Despite the “toy” nature of our model, the Hubbard

Hamiltonian can be accurately realized by loading ultracold
fermionic atoms into optical lattices [29–31]. These quan-
tum simulators offer precise experimental control over the
microscopic details of the system. In the Supplemental
Material (SM) [32] we show how dephasing can occur by
immersing the lattice into a homogeneous Bose-Einstein
condensate [40,41]. If the interactions are tuned with
Feshbach resonances [42,43] so that the scattering ampli-
tudes between the two fermionic spin states and the bosons
are equal in magnitude and opposite in sign, then dephasing
will occur solely in the spin sector.
Results.—We couple the Hubbard Hamiltonian in Eq. (1)

to an environment which applies spin dephasing on each
site of anM-site lattice. The ensuing dynamics is modeled,
under the Markov approximation, via the Lindblad master
equation,

∂ρ
∂t ¼ Lρ ¼ −i½H; ρ� þ γ

X

j

�
LjρL

†
j −

1

2
fL†

jLj; ρg
�
;

Lj ¼ szj ¼ n↑;j − n↓;j; ð4Þ

with Lindblad operators szj on each site j. Because these
operators are restricted to the spin SU(2) symmetry sector,
we obtain ½Lj; η�� ¼ ½Lj; ηz� ¼ 0∀ j.
For Eq. (4), any operator A which satisfies

½H;A� ¼ ½Lj; A� ¼ ½L†
j ; A� ¼ 0 ∀ j ð5Þ

is a null eigenvector of L and the adjoint map L†, which
means the associated observable hAi is conserved. Thus,
the map in Eq. (4) conserves hηþη−i, hηzi, and
hSzi ¼ P

ihszi i. Through a power series expansion, any
appropriately trace normalized function fðηþη−; ηz; SzÞ of
these operators is a steady state of L; i.e., if
ρss ¼ fðηþη−; ηz; SzÞ, then Lρss ¼ 0. In the SM [32] we
show that steady states of this form have Trðρssηþi η−j Þ ¼
const∀ i; j (see also Ref. [44]). We also show how this
result of heating-induced long-range order can be extended
to arbitrary models with multiple SU(2) symmetries. We
emphasize that the expected steady state ρss is realizable for
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any bipartite D-dimensional realization of the spin-
dephased Hubbard model.
Here, we focus on 1D lattice realizations due to their

numerical tractability. We perform calculations where the
system is initialized in a given state and then evolved by
solving the time-dependent master equation in Eq. (4) and
quenching U, providing a direct comparison with the
dynamics of the closed system. In the open system the
value of U which we quench to solely sets the timescale of
relaxation and long-range order will always appear. We use
a quantum trajectories approach [45] to solving Eq. (4)
combined with density matrix renormalization group [46]
and time evolving block decimation [47] algorithms for
finding the ground state and evolving the wave function of
the system, respectively. These simulations were performed
with the Tensor Network Theory library [48]. Further
numerical details and analysis can be found in the SM [32].
In Fig. 1. we plot, for various distances j, the averaged

quantity hηþi η−iþji over time for a quench from the ground
state of the Hubbard Hamiltonian. We also include the
matrix of correlations of hηþi η−j i for the density matrix
following the quench. For comparison, we show the case
where the system is not coupled to the environment, γ ¼ 0.
When the environment is present there is a relaxation of the
system to a steady state which possesses the order

expressed in Eq. (3); the value of hηþi η−j i is finite and
constant for all i ≠ j. We observe that this is facilitated by a
decrease in the short-range η-pairing correlations in order to
allow the long-range ones to increase: the nonequilibrium
dynamics involve a “spreading” of the η correlations over
all length scales of the system, which is necessary due to
the conservation of ηþη−. Plots of the corresponding
doublon momentum distribution are discussed in the
SM [32].
We also show how this ODLRO is observable even under

perturbative and unwanted dephasing in the model. We do
this by introducing “charge dephasing” using jump oper-
ators that do not solely act in the spin basis, breaking the
strong symmetry relations and causing the steady state of
the Liouvillian to contain no coherences. Nonetheless, we
set the strength of the charge dephasing to values around
1% of the spin dephasing and find there exists an
intermediate timescale where the results of Fig. 1 can be
observed. We also find that the window in which the
uniform long-range correlations exist can be directly
controlled by the ratio of the couplings for the spin
dephasing and the charge dephasing: the dissipative evo-
lution induced by the charge dephasing becomes increas-
ingly frozen out as this ratio increases. In particular, our
data suggest that the length of this window can be extended
by increasing the coupling of the spin dephasing while the
other parameters in the model remain constant.
To obtain a more intuitive idea of the nature of the steady

state, ρss ¼ fðηþη−; ηz; SzÞ, we consider a physically moti-
vated parametrization of the steady state function,

ρss ∝ expðμ1ηþη− þ μ2N↑ þ μ3N↓Þ; ð6Þ

where we have exchanged ηz and Sz with N↑ ¼ P
i n↑;i and

N↓ ¼ P
i n↓;i, as they can be expressed as linear combi-

nations of these operators. Calculations on small lattices
show that the parametrization in Eq. (6) captures all
relevant observables when compared to numerical simu-
lations which reach the long-time limit in Eq. (4).
Equation (6) describes a generalized grand-canonical-like
equilibrium (GCE) state with the Lagrange multipliers μ1,
μ2, μ3 associated to each of the conserved quantities.
Notably, the Lagrange multiplier for the Hamiltonian is
0, i.e., at infinite temperature. As is typical of states in this
form, the Lagrange multipliers are independent of the
quench parameters and are governed solely by the values
of the conserved quantities hηþη−i, hN↑i, and hN↓i
associated with the initial state. The existence of a
“quadratic” charge (ηþη−) in the GCE state is crucial for
the presence of nontrivial long-range order and sets it apart
from generalized Gibbs ensemble states [49–52].
To emphasize the properties of the stationary state in

Eq. (6), we plot, in Fig. 2., the projection of the density
matrix in the spin (s) and η (d) d.o.f. Ps;dρPs;d. Explicitly,
these projectors remove any basis vectors which contain,

(a) (b)

(c) (d)

FIG. 1. (a),(b) Evolution of the correlator hηþi η−iþji, averaged
over all sites separated by a distance j, for the 10 site Hubbard
model at half filling and hSzi ¼ 0. The system is initialized in the
ground state of H for U ¼ 4.0τ and then evolved with a system-
environment coupling of γ ¼ 2.0τ for (a) and γ ¼ 0.0 for (b). In
both quenches the interaction strength is changed to U ¼ τ. (c),
(d) Matrix of correlations of jhηþi η−j ij associated with the density
matrix at tτ ¼ 20.0 for the simulations in (a) and (b), respectively.
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respectively, doublons (σ ∈ f↑↓; vacg) and singlons
(σ ∈ f↑;↓g) on any lattice sites. We plot these projections
following a quench from a thermal state of the Hubbard
model. Initially [Figs. 2(a) and 2(b)], the system contains
coherences in both these sectors which decay with distance
—additionally (not pictured), the density matrix contains
coherences between doublons and singlons. Following spin
dephasing in the long-time limit, any coherences involving
singlons are destroyed resulting in an infinite temperature
ensemble in the spin symmetry sector [Fig. 2(c)].
Only coherences involving doublons and holons remain
[Fig. 2(d)]. These are completely distance invariant, as
described by the parametrization in Eq. (6).
The strong symmetries [53] hηþη−i, hN↑i, and hN↓i can

be used to block diagonalize the Liouvillian and, hence, the
degeneracy of ρss is determined by the distinct combina-
tions of the eigenvalues of these operators. The steady
states are the states with maximum η order in each block,
quantified by the amplitude of the uniform off-diagonal
correlations jhηþi η−j ij, i ≠ j. Notably, Yang’s states jψi ∝
ðηþÞN jvaci form a subset of these steady states. They are

the only pure steady states as they exist in the decoherence
free subspace [54] of Eq. (4).
The infinite temperature ensemble pictured in Fig. 2(c)

shows that the dephasing has continuously pumped energy
into the spin d.o.f. of the lattice until it saturates and reaches
infinite temperature. An alternative method of achieving
this is through Floquet heating. To show this, we consider
the closed Hubbard model under periodic driving in the
form of a time-dependent inhomogeneous magnetic field:

HðtÞ ¼ H þ BðtÞ
XL

i¼1

fðiÞszi ; ð7Þ

with BðtÞ ¼ V cosðΩtÞ and fðiÞ describing the inhomoge-
neity. In the long-time limit the driving is expected to
thermalize the system to infinite temperature [13,14].
However, because in this case the driving term commutes
with all the generators of the η symmetry, we expect heating
to occur only within the spin sector.
In Fig. 3 we show how, by time evolving an initial state

under HðtÞ, we realize long-time dynamics identical to that
induced by the spin dephasing. By resonantly driving the

(a) (b)

(c) (d)

FIG. 2. Projections, ρ0 ¼ Ps;dρPs;d, of the density matrix in the
spin (s) and η (d) sectors of the M ¼ 6 Hubbard model. The
system is at symmetric half filling, hN↑i ¼ hN↓i ¼ M=2, and the
projections have been renormalized [Trðρ0Þ ¼ 1]. The color
indicates the magnitude of the matrix elements.. Following the
projection, the indices i and j run over the remaining basis states
in lexicographic order when they are converted to binary
strings, where ↑ ¼ 1, ↓ ¼ 0 and ↑↓ ¼ 1, vac ¼ 0 for the
projections in s and d, respectively. As an example, for
plots (a) and (c), when i ¼ 1, this corresponds to the
basis vector j↑↑↑↓↓↓i ¼ j111000i, and when i ¼ 20,
j↓↓↓↑↑↑i ¼ j000111i. (a),(b) Projections for the thermal state
of the U ¼ 2.5τ Hubbard model: ρ ∝ expð−βHÞ with β ¼ 0.8=τ.
(c),(d) Projections following spin dephasing of this initial state by
the map in Eq. (4) in the long-time limit with quench parameters
U ¼ τ and γ ¼ 2.0τ.

(a)

(b)

FIG. 3. Dynamics of the averaged η correlations jhηþi η−iþjij
following a quench from the U ¼ τ ground state of the M ¼ 8
half-filled Hubbard model with hSzi ¼ 0. The blue curves reflect
a quench with the periodically driven Hamiltonian in Eq. (7),
where U ¼ 6.0τ and Ω ¼ τ. The green markers are for a quench
under the dephasing map in Eq. (4) withU ¼ τ and γ ¼ 2.0τ. The
dashed lines indicate the prediction from the grand-canonical
ensemble in Eq. (6). Insets show the dependence of the
correlations on distance, extracted for the blue curve at times
tτ ¼ 0.0 and tτ ¼ 60.0. (a) V ¼ 2.0U and fðiÞ ¼ i. (b) V ¼ 4.0U
and fðiÞ ∈ rand½0; 2.0�, a uniform random number on the
specified interval.
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system, U ¼ nΩn ∈ Zþ, the system thermalizes quickly
[15] and the observables are in good agreement with both
the grand-canonical description of Eq. (6) and long-time
simulations of the map in Eq. (4). There is completely
uniform off-diagonal long-range order in η pairs (Fig. 3,
insets).
In Fig. 3(a) we choose a linear magnetic field fðiÞ ¼ i,

while in Fig. 3(b) we choose a disordered field. In both
cases the long-time dynamics are the same and this
emphasizes that the choice of driving parameters and
inhomogeneity is arbitrary—they only affect the timescale
on which the system relaxes.
Conclusion.—We have demonstrated that long-range η

pairing can be created and protected within the Hubbard
model by directly heating the spinful d.o.f. to infinite
temperature. This destroys any coherences involving spin-
ful particles which, in turn, creates uniform long-range
correlations between the η quasiparticles in the lattice.
Recent work has demonstrated that, with a judicious

choice of parameters, applying a Gaussian pulse of a
specific duration to the Mott-insulating phase of the
Hubbard model can excite η pairs [16]. This driving does
not commute with the generators of the η symmetry and,
hence, uniform long-range correlations are not guaranteed.
This does, however, open up the possibility of applying our
heating scheme in conjunction with a similar driving
process which can enhance the η correlations in the system.
Our heating would then continually spread these over all
length scales, creating a long-lived superconducting state.
We also anticipate further work using an alternate

heating mechanism within the Hubbard model, or t − J
model, which protects singlets and destroys other coher-
ences. This could enhance superexchange pairing and
induce superconductivity through nearest-neighbor singlet
pairing [10,55,56].
Finally, we emphasize that the results of this work are

due to the multiple SU(2) symmetries of the Hubbard
model and not its microscopic details. Hence, ODLRO can
be realized through dephasing in any model with multiple
symmetries (see SM [32]); as examples, we suggest multi-
band Hubbard models and the Richardson-Gaudin model
[57], which also permit superconducting regimes.
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