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Benchmarking methods that can be adapted to multiqubit systems are essential for assessing the overall
or “holistic” performance of nascent quantum processors. The current industry standard is Clifford
randomized benchmarking (RB), which measures a single error rate that quantifies overall performance.
But, scaling Clifford RB to many qubits is surprisingly hard. It has only been performed on one, two, and
three qubits as of this writing. This reflects a fundamental inefficiency in Clifford RB: the n-qubit Clifford
gates at its core have to be compiled into large circuits over the one- and two-qubit gates native to a device.
As n grows, the quality of these Clifford gates quickly degrades, making Clifford RB impractical at
relatively low n. In this Letter, we propose a direct RB protocol that mostly avoids compiling. Instead, it
uses random circuits over the native gates in a device, which are seeded by an initial layer of Clifford-like
randomization. We demonstrate this protocol experimentally on two to five qubits using the publicly
available ibmqx5. We believe this to be the greatest number of qubits holistically benchmarked, and this
was achieved on a freely available device without any special tuning up. Our protocol retains the simplicity
and convenient properties of Clifford RB: it estimates an error rate from an exponential decay. But, it can be
extended to processors with more qubits—we present simulations on 10+ qubits—and it reports a more
directly informative and flexible error rate than the one reported by Clifford RB. We show how to use this
flexibility to measure separate error rates for distinct sets of gates, and we use this method to estimate the
average error rate of a set of CNOT gates.
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With quantum processors incorporating 5 to 20 qubits
now commonplace [1–12], and 50þ qubits expected soon
[13–15], efficient, holistic benchmarks are becoming
increasingly important. Isolated qubits or coupled pairs
can be studied in detail with tomographic methods [16–20],
but the required resources scale exponentially with the
qubit number n, making these techniques infeasible for
n ≫ 2 qubits. And, although an entire device could be
characterized two qubits at a time, this often results in
overoptimistic estimates of device performance that ignore
crosstalk and collective dephasing effects. What is needed
instead is a family of holistic benchmarks that quantify
the performance of a device as a whole. Randomized
benchmarking (RB) methods [21–29] avoid the specific
scaling problems that afflict tomography—in RB, both the
number of experiments [30] and the complexity of the data
analysis [25] are independent of n—but introduce a new
scaling problem in the form of gate compilation.
Although a quantum processor’s native gates typically

include only a few one- and two-qubit operations, the
“gates” benchmarked by RB are elements of an exponen-
tially large n-qubit group 2-design (e.g., the Clifford

group). These gates must be compiled into the native gate
set [31,32]. As the number of qubits increases, the circuit
depth and infidelity of these compiled group elements
grow rapidly, rendering current RB protocols impractical
for relatively small n, even with state-of-the-art gates.
The industry-standard protocol laid out by Magesan et al.
[24,25]—which we will refer to as Clifford randomized
benchmarking (CRB)—has been widely used to bench-
mark [33–44] and calibrate [45,46] both individual qubits
and pairs of qubits, but we are aware of just one reported
application to three qubits [47] and none to four or more.
Another consequence of compilation is that, instead of

quantifying native gate performance, CRB measures the
error per compiled group element. Although this is some-
times translated into a native gate error rate (e.g., by dividing
it by the average circuit size of a compiled Clifford gate [42–
44]), this is ad hoc and not always reliable [48]. Moreover,
error rates obtained this way are hard to interpret for n ≫ 1
CRB,where error rates canvarywidely between native gates.
In this Letter, we propose and demonstrate direct

randomized benchmarking (DRB), which is an RB protocol
that directly benchmarks the native gates of a device.
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Like CRB, our DRB protocol utilizes random circuits of
variable lengths, but these circuits directly contain the
native gates of the device rather than compiled Clifford
operations (see Fig. 1). Our protocol is not infinitely
scalable, but the simplified structure enables DRB to be
successfully implemented on significantly more qubits than
CRB. Moreover, DRB preserves the core simplicity of
CRB: it estimates an error rate from an exponential decay.
We anticipate that DRB will be an important tool for

characterizing current multiqubit devices. For this reason,
this Letter focuses on the practical applications of DRB.
We present experiments on two to five qubits and simu-
lations on up to 14 qubits. These examples show that DRB
works, they demonstrate how our protocol improves on
current methods, and they show that DRB can be imple-
mented on significantly more than two qubits on current
devices. We follow these demonstrations with arguments
for why DRB is broadly reliable, but this Letter does not
contain a comprehensive theory for DRB—that will be
presented in a series of future papers.
Direct randomized benchmarking.—DRB is a protocol

to directly benchmark the native gates in a device. There is
flexibility in defining a device’s “native gates.” For DRB,
we only require that they generate the n-qubit Clifford
group Cn [49]. Normally, they will be all the n-qubit
Clifford operations that can be implemented by depth-one
circuits, e.g., by parallel one- and two-qubit gates (see
Fig. 1). So we refer to these operations as either circuit
layers or (n-qubit) native gates.
Just as CRB uses sequences of random Clifford gates,

DRB uses sequences of random circuit layers. But, whereas
the Clifford gates in CRB are supposed to be uniformly
random, DRB allows the circuit layers to be sampled
according to a user-specified probability distribution Ω.
Many distributions are permissible but, to ensure reliability,
Ω must have support on a subset of the gates that generates
Cn, and Ω random circuits must quickly spread errors (see
later in this Letter).
The n-qubit DRB protocol is defined as follows (note

that all operations are assumed to be imperfect): (1) For a

range of lengthsm ≥ 0, repeat the following km ≫ 1 times:
(1.1) Sample a uniformly random n-qubit stabilizer
state jψi. (1.2) Sample an m-layer circuit Um, where
each layer is drawn independently from some user-speci-
fied distribution Ω over all n-qubit native gates.
(1.3) Repeat the following N ≥ 1 times: (1.3.1) Initialize
the qubits in j0i⊗n. (1.3.2) Implement a circuit to map
j0i⊗n → jψi. (1.3.3) Implement the sampled circuit Um.
(1.3.4) Implement a circuit that maps Umjψi to a known
computational basis state jsi. (1.3.5) Measure all n qubits
and record whether the outcome is s (success) or not
(failure). (2) Calculate the average probability of success
Pm at each length m, averaged over the km randomly
sampled circuits and the N trials for each circuit. (3) Fit Pm
to Pm ¼ Aþ Bpm, where A, B, and p are fit parameters.
(4) The Ω-averaged DRB error rate of the native gates is
r ¼ ð4n − 1Þð1 − pÞ=4n. The n-dependent rescaling used
above is different from that in common usage [23–25].
Using our convention, r corresponds to the probability of
an error when the errors are stochastic (see later in this
Letter). This is particularly convenient when varying n.
DRB is similar to the earliest implementations of RB.

Both the one-qubit RB experiments of Knill et al. [23]
and the three-qubit experiments of Ryan et al. [50] utilized
random sequences of group generators, and so were specific
examples of DRB without the stabilizer state preparation
step and flexible sampling. These additional features, how-
ever, are essential to DRB: they make DRB provably reliable
under broad conditions, and they allow us to separate the
error rate into contributions from distinct sets of gates.
What DRB measures.—To interpret DRB results, it is

important to understand what DRB measures. Assume that
the gate errors are stochastic, which can be enforced to a
good approximation by, e.g., Pauli-frame randomization
[51–53] or by following each layer in DRB with a random
n-qubit Pauli gate. Then, whenever Ω-random circuits
quickly increase the weight of errors, r is a good estimate
of the probability that an error happens on an Ω-average
native gate. That is, r ≈ ϵΩ ≡P

iΩðGiÞϵi, where ϵi is the
probability of an error on the n-qubit native gate Gi. Later,
we will derive this relationship.
Because r depends on the sampling distribution, they

should be reported together. A similar but hidden variability
also exists in CRB—the CRB r depends on the Clifford gate
compiler. This compiler dependence in CRB is inconvenient
because the properties of multiqubit Clifford gate compilers
are difficult to control. In contrast, because we directly
chooseΩ, we can control how often each gate appears in the
random circuits to estimate the error rates of particular
interest.
Experiments on two to five qubits.—To demonstrate that

DRB is useful and behaves correctly on current multiqubit
devices, we used it to benchmark two- to five-qubit subsets
of the publicly accessible ibmqx5 [1,2]. The ibmqx5 native
gates comprise CNOTs and arbitrary one-qubit gates [2,54];
we benchmarked a set of n-qubit gates consisting of parallel

FIG. 1. Illustration of circuits used in Clifford RB and the
streamlined direct RB protocol that we propose.
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applications of all directly available CNOTs and all one-qubit
Clifford gates.
Figure 2 summarizes our results. Figure 2(a) demon-

strates that DRB was successful on two to five qubits: an
exponential decay is observed, and r is estimated with
reasonable precision (bootstrapped 2σ uncertainties are
shown). To our knowledge, this is the largest number of
qubits holistically benchmarked to date, which was made
possible by the streamlined nature of DRB (see Fig. 1).
To interpret these results, it is necessary to specify the
circuit sampling. Each layer was sampled as follows: with
probability pCNOT, we uniformly choose one of the CNOTs
and add it to the sampled layer; for all n or n − 2 remaining
qubits, we independently and uniformly sample a one-qubit
gate and add it to the layer. For the data in Fig. 2(a),
pCNOT ¼ 0.75. We also implemented experiments with
pCNOT ¼ 0.25; see the Supplemental Material [55] for
these data and further experimental details.
Using this sampling, the average number of CNOTs per

layer is pCNOT, which is independent of n. Therefore, r will
vary little with n if CNOT errors dominate, the error rates are
reasonably uniform over the CNOTs, and n-qubit bench-
marks are predictive of benchmarks on more than n qubits.
Instead, the observed r increases quickly with n. This is
quantified in Fig. 2(c), where we compare each observed r
to a prediction rcal obtained from the ibmqx5 CRB
calibration data (one-qubit error rates from simultaneous

one-qubit CRB [2,56,60] and CNOT error rates from CRB
on isolated pairs [56]). These predictions are calculated
both by using r ≈ ϵΩ and via a DRB simulation using a
crosstalk-free error model that is consistent with the cali-
bration data. Both methods agree, confirming that the
increase in r with n is not due to a failure of DRB. For
n ¼ 2, rcal and r are similar, demonstrating that n-qubit
DRB and CRB are consistent. But, as n increases, r diverges
from rcal. This shows that the effective error rates of the one-
qubit and/or two-qubit gates in the device change as we
implement circuits over more qubits, demonstrating that
DRB on more than two qubits can detect errors that are not
predicted by one- and two-qubit CRB (calibration data) or
two-qubit DRB (our data). This highlights the value of
holistic benchmarking for multiqubit devices.
Using the data from Fig. 2(a) (pCNOT ¼ 0.75) alongside

additional data with pCNOT ¼ 0.25 sampling [61], we can
estimate the average error rate of the CNOT gates in n-qubit
circuits. For each n, and using r ≈

P
iΩðGiÞϵi, we have

r⃗ ≈Mϵ⃗, where r⃗ ¼ ðr0.75; r0.25Þ with r0.75 (respectively,
r0.25) denoting the r obtained with pCNOT ¼ 0.75 (respec-
tively, pCNOT ¼ 0.25) sampling; ϵ⃗ ¼ ðϵA; ϵBÞ with ϵA
(respectively, ϵB) denoting the average error rate of those
n-qubit gates containing one CNOT in parallel with one-qubit
gates on the other qubits (respectively, n parallel one-qubit
gates); and M ¼ 1

4
ð3
1
1
3
Þ. Therefore, ϵA and ϵB can be

estimated using ϵ⃗ ¼ M−1r⃗, and so—by estimating the
average one-qubit gate error rate from ϵB and removing this
contribution from ϵA—we can estimate the mean CNOT error
rate vs n. Estimates are given in Fig. 2(d). For two qubits, our
estimate of the CNOTerror rate is similar to the prediction from
the calibrationdata, and soourmethodology seems consistent
withCRB techniques. In contrast, our results show that CNOTs
perform substantially worse in circuits on more than two
qubits than they do in two-qubit circuits. This is likely due to
CNOT crosstalk; i.e., CNOTs affect “spectator” qubits.
DRB simulations.—We have shown that DRB works on

current multiqubit devices, and so we now demonstrate with
simulations that r ≈ ϵΩ ≡P

iΩðGiÞϵi. Assume n qubits with
native gates consisting of parallel CNOT, idle I, HadamardH,
phase P gates (Pjxi ¼ ixjxi), and all-to-all connectivity.
We model gate errors by assuming that, after each CNOT

(respectively, one-qubit gate), the qubits involved in the gate
are independently, with a probability of 0.25% (respectively,
0.05%), subject to a random σx, σy, or σz error. So, the CNOT

error rate is ≈ 0.5%. We simulated DRB with a sampling
distribution defined by randomly pairing up the qubits,
applying a CNOT to a pair with probability p̃CNOT ¼ 0.5,
and applying uniformly random one-qubit gates (H, P, or I)
to all qubits that do not have a CNOTacting on them. Figure 3
shows simulated 2- to 14-qubitDRBandCRBdata.DRBhas
succeeded: the decay is exponential, and

r ≈ ϵΩ ¼ 1 − ð0.5 × 0.99752 þ 0.5 × 0.99952Þn=2
≈ n × 0.15%:

(a)

(d)

(c)

(b)

FIG. 2. Experimental two- to five-qubit DRB on ibmqx5.
(a) Success probability decays. The points are average success
probabilities Pm, and the violin plots show the distributions of
the success probabilities at each length over circuits (there are 28
circuits per length). The curves are obtained from fitting to Pm ¼
Aþ Bpm and r ¼ ð4n − 1Þð1 − pÞ=4n. (b) Schematic of ibmqx5.
Colors match those in Fig. 2(a) and correspond to the additional
qubits (and CNOTs) added from n → nþ 1-qubit DRB. (c) Ob-
served r vs n, and predictions from one- and two-qubit CRB
calibration data. (d) Estimates of the average error rate of the
CNOT gates in n-qubit circuits, obtained by comparing data in
Fig. 2(a) with additional DRB data that used circuits with fewer
CNOTs per layer.
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In contrast, the CRB r grows rapidly with n—for only four-
qubit CRB r ≈ 10%—and CRB fails for n > 12, demon-
strating that DRB can be implemented on more qubits than
CRB. Moreover, the CRB error rates r rescaled as rRCRB ¼
1 − ð1 − rÞ1=α [42–44,48], with α as the average compiled
Clifford circuit depth or CNOT count, are not simple functions
of the native gate error rates (see Fig. 3).
This example is illustrative but simplistic. So, in the

Supplemental Material [55], we present additional simu-
lations with large, nonuniform CNOT error rates, as well as
limited qubit connectivity. We also simulate the CNOT error
rate estimation method used on the ibmqx5 data, validating
the technique.
DRB theory.—We now provide a theory for DRB of

gates with Pauli-stochastic errors. DRB circuits consist of
preparing a uniformly random n-qubit stabilizer state ψ , a
circuit Um ¼ Gsm � � �Gs1 with m layers Gi sampled accord-
ing to Ω, and a stabilizer measurement projecting onto
Umjψi. For now, assume that the stabilizer state preparation
and measurement (SSPAM) are perfect. In the stochastic
error model, each time Um is applied, there is some faulty
implementation in which Ũm ¼ PsmGsm � � �Ps1Gs1 , with Psi
either some Pauli error or the identity. DRB aims to capture
the rate that these Psi deviate from the identity. Because ψ
is a stabilizer state, the measurement will register success if,
and only if, one of the following holds: (S1) No errors
occur in Ũm, i.e., all Pi ¼ 1; (S2) 2þ errors occur in Ũm
but, when they propagate through the circuit, they cancel,
i.e., multiple Pi ≠ 1 but Ũm ¼ ikUm (for some k ¼ 0, 1, 2,
3); or (S3) 1þ errors occur in Ũm that do not cancel, but
they are nonetheless unobserved by the stabilizer meas-
urement, i.e., Ũm ≠ ikUm but Ũmjψi ¼ ilUmjψi.
The DRB average success probability Pm is obtained by

averaging PðUm;ψÞ ¼ jhψ jU†
mŨmjψij2 over ψ, Um and the

possible Pauli errors. We may then write Pm ¼
s1 þ ð1 − s1Þðs2 þ ð1 − s2Þs3Þ, where s1 is the probability
of S1 (i.e., no errors), s2 is the probability of S2 conditioned
on 1þ errors occurring, and s3 is the probability of S3
conditioned on 1+ errors occurring and the errors not

canceling. Because ϵΩ is the Ω-averaged error rate per
layer, s1 ¼ ð1 − ϵΩÞm. A uniformly random stabilizer state
ψ is an eigenstate of any Pauli error with a probability of
ð2n − 1Þ=ð4n − 1Þ, and so s3 ¼ ð2n − 1Þ=ð4n − 1Þ ≈ 2−n.
This is one of the motivations for the state preparation step
in DRB.
In order to understand the effect of s2 on Pm, we consider

two regimes: small n (≲ 3), and not-so-small n (≳3). In
both regimes, we expect Pauli errors to occur, at most, once
every several layers and to be low weight, with support on
only a few qubits. In the not-so-small n regime, errors
propagating through a sequence of one- and two-qubit gates
are likely to quickly increase in weight [62–64] (due to the
demands we made of Ω earlier). Subsequent errors are
therefore very unlikely to cause error cancellation. If each
layer is a uniformly random Clifford gate (as in uncompiled
CRB), any Pauli error is randomized to one of the 4n − 1
possible n-qubit Pauli errors at each step. So, the probability
that another error cancels with an earlier error is ≃1=4n,
implying that s2 ≲ 1=4n. In DRB, we expect error cancel-
lation at a rate only slightly above this. Therefore, s2
contributes negligibly to Pm, and so Pm ≈ 2n þ ð1 − 2nÞ
ð1 − ϵΩÞm. This is an exponential with a decay rate of ϵΩ.
Verifying this error scrambling process for a given sampling
distribution Ω is computationally efficient in the number of
qubits. Distributions that do not scramble the errors quickly
(e.g., if two-qubit gates are rare) can yield decays that are not
simple exponentials. These should be avoided.
For small n, the probability of cancellation (s2) is not

negligible for any distribution. But, because n is small, we
only need a few random circuit layers of Clifford-group
generators to implement approximate Clifford twirling,
and so Pm may be computed using the resulting effective
depolarizing channel. Such channels are well known to lead
to exponential decays [25]. However, s2 (a function of m)
now contributes significantly to the DRB decay constant p,
and so p ≉ 1 − ϵΩ. This motivates r¼ð4n−1Þð1−pÞ=4n,
which removes the unwanted s2 contribution in 1 − p. Let
each layer be followed by a depolarizing map Dλ, where
Dλ½ρ� ¼ λρþ ð1 − λÞ1=2n. Then, Pm ¼ ð1 − 2−nÞλm þ
2−n but the error rate of Dλ is ϵ ¼ ð4n − 1Þð1 − λÞ=4n.
Of course, in the large-n limit, ϵ → 1 − λ.
Above, we assumed perfect SSPAM, which is unrealis-

tic. The SSPAM operations are almost m independent, and
so errors in the SSPAM are almost entirely absorbed into A
and B in Pm ¼ Aþ Bpm as normal in RB [24,25]. The only
m-dependent impact is from correlations between the
stabilizer states that are prepared and measured—they
are perfectly correlated (respectively, uncorrelated) at m ¼
0 (respectively, m → ∞). This causes an inconsequentially
small tendency to overestimate the gate error rate—because
SSPAM contributes an error of 1 − avgi½ð1 − ϵi;SSPAMÞ2� at
m ¼ 0 but a smaller error of 1 − ðavgi½1 − ϵi;SSPAM�Þ2 at
m → ∞, where ϵi;SSPAM is the error in creating or meas-
uring the ith stabilizer state.

FIG. 3. Simulation of DRB and CRB for 2 to 14 qubits with a
simple error model. The n-qubit DRB error rate is r ≈ n × 0.15%,
which is consistent with the simulated sampling-averaged native
gate error rate ϵΩ.

PHYSICAL REVIEW LETTERS 123, 030503 (2019)

030503-4



DRB remains effective with coherent errors—with any
one-qubit gates that generate the one-qubit Clifford group,
independently random one-qubit gates on each qubit are
sufficient to quickly twirl coherent errors to Pauli-stochastic
errors, implying that errors can only coherently combine
between a few layers in a DRB circuit (in contrast to the
uncontrolled coherent addition within a compiled Clifford
gate inCRB).But linking r to a formal notion of the gate error
rate is more subtle with coherent errors, which is in direct
analogy with CRB [65–67], as will be discussed in future
work.
Conclusions.—Benchmarking methods for multiqubit

systems are essential for assessing the performance of
current and near-term quantum processors. But, currently,
there are no reliable methods that can be easily and
routinely applied to more than two qubits with current
device performance. In this Letter, we have introduced and
demonstrated direct randomized benchmarking, which is a
method that streamlines the industry-standard Clifford
randomized benchmarking technique [24,25] so that it
can be applied to more qubits. DRB retains the core
simplicity of CRB, our protocol directly measures the
quantities of most interest—the error rates of the native
gates in a device—and it is user configurable, allowing a
variety of important error rates to be estimated. Our
experimental demonstrations were on two to five qubits
and, using a publicly accessible device [1,2], we set a
record for the number of qubits holistically benchmarked.
The tools we used are available as open-source code [68],
and they support any device connectivity. So, we anticipate
that 5 to 10+ qubits will soon be benchmarked with our
protocol, providing important insights into state-of-the-art
device performance. Finally, the techniques of DRB can
also be applied to extend and improve the full suite of RB
methods [26,27,60,69–77], and varied-sampling DRB pro-
vides an alternative to both interleaved CRB [77] and
“interleaved DRB” for estimating individual error rates,
demonstrating the broad applicability and impact of DRB.
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