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Quantum pseudorandomness, also known as unitary designs, comprises a powerful resource
for emergent quantum technologies. Although in theory pseudorandom unitary operators can be
constructed efficiently, realizing these objects in realistic physical systems is a challenging task. Here,
we demonstrate experimental generation and detection of quantum pseudorandomness on a 12-qubit
nuclear magnetic resonance system. We first apply random sequences to the interacting nuclear spins,
leading to random quantum evolutions that can quickly form unitary designs. Then, in order to probe
the growth of quantum pseudorandomness during the time evolutions, we propose the idea of using the
system’s multiple-quantum coherence distribution as an indicator. Based on this indicator, we measure the
spreading of quantum coherences and find that substantial quantum pseudorandomness has been achieved
at the 12-qubit scale. This may open up a path to experimentally explore quantum randomness on
forthcoming large-scale quantum processors.
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Introduction.—Quantum randomness is a fundamental
concept as well as a useful tool in many fields of modern
quantum science and technology. In nonequilibrium statis-
tical mechanics, random quantum processes play key roles
in understanding many-body quantum systems out of equi-
librium, as they capture universal properties of system
dynamics and model the approach to thermalization [1–4].
In quantum computing, random transformations are crucial
for demonstrating quantum advantages [5–7]. Recent
progress in quantum information processing has further
intrigued novel applications of quantum randomness. It is
now widely used in quantum tomography [8,9], fidelity
estimation [10], Rényi entropy measurement [11,12], and
noise characterization [13–15]. For example, randomized
benchmarking [14], as a standard technique for character-
izing quantum devices, crucially relies on the ability to
sample random quantum operations.
However, similarly to the classical case, the complexity of

generating fully random transformations on a quantum
system grows exponentially with the system size [16].
Therefore, quantum pseudorandomness, often cast as uni-
tary designs, was proposed as an alternate. Unitary designs
are operationally useful sets of unitaries. A k design is

any ensemble of unitaries capable of simulating up to the kth
order statistical moments of the Haar ensemble on average
[17]. Great efforts were devoted to efficient constructions of
k designs or explorations of their practical uses.
Unfortunately, experimental progress is very limited—
unitary designs have been achieved only in small-sized
physical systems [18–20]. As the scale of controllable
quantum systems is growing rapidly, realizing quantum
pseudorandomness in these systems becomes an impor-
tant task.
In this work, we realize experimental generation of

approximate unitary 2-designs on a 12-qubit nuclear
magnetic resonance (NMR) system. On the whole, our
experimental implementation is based on addressing two
key problems. The first problem concerns experimental
feasibility of generating quantum pseudorandomness.
There exist a variety of generation protocols, including
polynomial-sized random quantum circuits [21–26], graph
state techniques [27,28], and random dynamics of some
design Hamiltonian [29], each with its own pros and cons.
In practice, we follow the design Hamiltonian approach
due to its advantages in saving qubit resources and in
reducing time cost. A design Hamiltonian is some random
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Hamiltonian satisfying that its time evolutions form unitary
designs spontaneously. A concrete form of the design
Hamiltonian was proposed in Ref. [29], which is composed
of periodically changing random spin-glass-type inter-
actions. In experiment, we show that these disordered
interactions can be readily simulated by NMR refocusing
techniques. Our numerical and experimental results dem-
onstrate that, evolving the 12-qubit system under a suitably
created design Hamiltonian is an effective way in produc-
ing pseudorandomness.
The second problem refers to the probe of generated

randomness. Recent studies suggest that tools such as out-
of-time-order correlators [29,30], Rényi entanglement
entropies [12], or neural networks [31] may serve as
diagnostics of unitary designs. However, there is much
lesser experimental study due to the difficulty arising from
the complexity in manipulating and detecting systems at
scale. For instance, Ref. [30] showed that a natural probe of
randomness, namely, frame potential, can be expressed in
terms of out-of-time-order correlators. But these correlators
become difficult to estimate at late times of the design
Hamiltonian evolution, because they tend to be saturated to
their corresponding Haar values, which are exponentially
small in the system size. In fact, previous experiments
measuring out-of-time-order functions were focused on the
short-time decay part [32,33]. However, our study concerns
both the short-time and long-time behavior of the pseudor-
andomness generation process, as the former features the
convergence property and the latter signals the onset of
pseudorandomness. For this purpose, we propose that the
multiple-quantum coherence (MQC), a well-established
technique from solid-state NMR [34,35], is a good indi-
cator. Recently, MQCs found interesting applications in the
studying of dynamical and statistical behavior of complex
quantum systems, such as localization-delocalization tran-
sition [36–38], buildup of multiparticle entanglement [39],
and information scrambling [32]. Here, we demonstrate
that MQC spectra can also be used as a suitable means for
detecting the time-development of pseudorandomness.
Definitions.—Webriefly review the definitions of random

unitary matrices and unitary designs. Let UðdÞ denote the
group of d × d unitary matrices, and consider an ensemble
of unitary operators E ¼ fUig where Ui ∈ UðdÞ. Let EHaar
denote the ensemble of unitary matrices uniformly distrib-
utedwith respect to theHaarmeasure onUðdÞ. An ensemble
E is said to be an approximate unitary design if it is close to
the Haar ensemble EHaar. More precisely, E forms an
ϵ-approximate k design, if for every monomial PðUÞ ¼
Ui1j1 � � �UikjkU

�
m1n1 � � �U�

mknk of a degree notmore than k, its
average overE is ϵ close to that over theHaar ensembleEHaar,
i.e., jðEE − EEHaarÞPðUÞj ≤ ϵ [26].
Approximate unitary designs can be realized in a number

of ways, among which the design Hamiltonian approach is
relatively easier to implement experimentally. A design
Hamiltonian is a physically local Hamiltonian whose

interactions vary randomly at each time step, and its
dynamics forms a unitary design after a threshold
time [29]. Mathematically, an ϵ-approximate k-design
Hamiltonian with l-local interaction is a random l-local
HamiltonianH, where there exists t0 > 0 such that, for most
of the time t ≥ t0, the propagatorUðtÞ ¼ R

t
0 expð−iHsÞds is

an ϵ-approximate unitary k design. Here, the shortest such
time t0 is called the design time of HðtÞ.
Experimental scheme.—In experiment, we implement

unitary 2-designs using the design Hamiltonian approach.
In the following, we will focus on this concrete example to
explain how to generate and probe quantum pseudoran-
domness. Our quantum processor is the home-prepared per-
13C-labeled dichlorocyclobutanone derivative, which con-
tains 7 labeled carbon nuclei and 5 proton nuclei and hence
forms a 12-qubit system; see Fig. 1(a). Experiments were
carried out on a Bruker Avance III 700 MHz spectrometer
at room temperature. The Hamiltonian and its parameters
can be found in the Supplemental Materials [40].
To construct the design Hamiltonian proposed in

Ref. [29], we apply a series of random refocusing pulse
sequences as shown in Fig. 1(c). The refocusing sequences
consist of a set of single-qubit π pulses about the x or y axis
[41], and change-of-basis Hadamard operations H⊗n in
between. Here, randomness comes from the π rotations
applied at random time, which is similar to the idea in
constituting randomized dynamical decoupling protocols
[42,43]. In experiment, the concrete form of the random
refocusing sequence is as follows. We introduce a set of

C

C

C

C

C

C
H

(a) (b)

(c)

FIG. 1. (a) Molecular structure of per-13C-labeled dichlorocy-
clobutanone. (b) Intuitive picture of time evolution operators
generated by a design Hamiltonian. It starts from the identity, and
approaches randomly distributed unitaries over the whole unitary
group as time passes. The trajectories represent different time
evolutions. (c) Schematic illustration of random refocusing
sequences that are applied to our 12-qubit system to produce
random Hamiltonian evolutions. The small rectangles represent
single-qubit π rotations.
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8-tuple column vectors λ¼fλðmÞ∶m¼1;2;…g. In Fig. 1(c),
m ¼ 4 blocks are plotted and the length for each block is
fixed to be T=2. Each λðmÞ contains eight entries randomly
chosen from the unit interval to determine where to insert

the π pulses, that is, the number λðmÞ
i means a π pulse that is

applied on the ith qubit in the mth block at time λðmÞ
i T=2.

Hence, in each block, the corresponding dynamical evo-
lution is governed by an effective disordered Hamiltonian

HðmÞ
Z ¼

X

i

ΩðmÞ
i σiz þ

X

i<j

JðmÞ
ij σiz ⊗ σjz; ð1Þ

where the frequencies ΩðmÞ
i and the couplings JðmÞ

ij are
randomly tuned by varying the locations of π pulses. The
function of the n-fold Hadamard gateH⊗n is to turn a Pauli-
σz basis into a Pauli-σx basis. The essential idea is that, these
alternate applications of time evolutions under dual bases
enable a quick approach to quantum pseudorandomness.
It is necessary to check to what extent our Hamiltonian

forms an approximate design Hamiltonian. A complete test
for unitary designs is by frame potential [44]. Let E ¼ fUig
be an ensemble, the kth frame potential is defined as the
average of the kth powers of the ensemble elements’
Hilbert-Schmidt overlaps [45]

FðkÞ
E ¼ 1

jEj2
X

i;j

jTrðUiU
†
jÞj2k: ð2Þ

There is FðkÞ
E ≥ FðkÞ

EHaar
¼ k!, with equality if and only if E is

a k design. Thus the deviation FðkÞ
E − FðkÞ

EHaar
can serve as a

measure of how close E is to a k design. For large-sized
systems d ≥ k, E must contain an exponential number (at
least jEj ≥ d2k=k!) of unitaries to become a k design [46],
implying that the exact frame potential calculation is
intractable. In our 12-qubit case, we thus use statistical
estimation and perform numerical simulation to compute
the first and the second frame potentials. We statistically
generate a sample of unitaries E based on our random
Hamiltonian evolutions and observe the convergence of the
frame potentials with respect to the sample size jEj.
Figure 2 shows our numerical results for different T.
Obviously, for a range of T and after two rounds of
evolutions, the estimated frame potentials converge to their
corresponding Haar values. The simulation results present
strong evidence that our design Hamiltonian can generate
an ensemble of unitaries with significant amount of
randomness.
Probing quantum pseudorandomness.—We perform

MQC growth experiments to detect the generated quantum
pseudorandomness. An outline of the experimental pro-
cedure is shown in Fig. 3(a). It contains four steps: (i) start
from a simple initial state ρð0Þ (e.g., a localized state);
(ii) evolve under our design Hamiltonian H to get

ρðtÞ ¼ e−iHtρð0ÞeiHt; (iii) apply a collective rotational
operator ϕz ¼ e−iMzϕ with Mz ¼

P
iσ

i
z=2; (iv) reverse

the random evolution in the second step.
Let us explain the above four-step procedure. If the design

Hamiltonian evolution e−iHt is sufficiently random, it will
excite all orders of coherences in ρðtÞ from a local operator
ρð0Þ. Here, for the basis jiihjj in the Zeeman representation,
a coherence order ν is the difference between two
quantum numbers: ν ¼ hijMzjii − hjjMzjji. So we expand
ρðtÞ ¼ P

νρνðtÞ, where ρνðtÞ is the submatrix composed of
all the order-ν elements. The core of the procedure is step
(iii), that is, the coherence order information is encoded
into the phase because ϕzρνðtÞϕ†

z ¼ e−iνϕρνðtÞ. Finally, we
reverse the random evolution and measure the overlap
Sðϕ; tÞ between the final state and the initial state, which
gives

Sðϕ; tÞ ¼
X

ν

e−iνϕIðν; tÞ: ð3Þ

Here Iðν; tÞ ¼ Tr½ρ2νðtÞ� is the amplitude for a given order ν.
Now it is clear that the steps taken above are to ensure that in
observing themultiple-quantum signal, all contributions to a
given order of coherence are generated with the same phase.
We then measure Sðϕ; tÞ as a function of ϕ at a fixed time t
and then perform the Fourier transform with respect to ϕ.
This gives all the amplitudes Iðν; tÞ of ρðtÞ and hence the
MQC spectrum is obtained. Furthermore, by varying the
evolution time t, we see the growth of MQCs.

FIG. 2. Numerical simulation of the first and the second frame
potentials of our design Hamiltonian’s dynamics. (a),(b) The total
evolution time is fixed as 60 ms, where a sampling of 120
evolutions almost achieves the convergence of F̃ðkÞ

E . Here, F̃ðkÞ
E is

equivalent to the frame potential in Eq. (2) up to a constant, so it
exhibits the same tendency. It is used to make the simulation
accessible for the case of 12 qubits; see details in the Supple-
mental Material [40]. (c),(d) We fix the sample size jEj to be 120.
F̃ðkÞ
E drops abruptly when the change-of-basis operation H⊗n is

applied. As the evolution time grows, they eventually approach
the corresponding Haar values, respectively.
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The next question is how Iðν; tÞ is distributed when
the evolution e−iHt is truly random. We conclude that
the typical distribution shows a Gaussian pattern
ItypicalðνÞ ∼ expð−ν2=nÞ, where n is the number of qubits.
The reason is as follows. Under a Haar random operation,
all possible coherences will be excited with equal proba-
bility. Therefore, the total intensity within a given order ν
simply relies on the number of transitions consistent with
that order. In an n-spin system, the number of configura-
tions for any coherence order ν is ½ð2nÞ=ðn − νÞ�, which is
well approximated by 22nðnπÞ−1=2 expð−ν2=nÞ for n > 6.
So in our case that n ¼ 12, the resulting MQC spectrum
typically shows a Gaussian pattern. These results
can be derived from evaluating moments of polynomials
on random unitaries [47]; see more details in the
Supplemental Material [40]. The behavior has been
observed in solid-state NMR where the spin dynamics is
rather complex [34,35]. Accordingly, we expect in experi-
ment that at long time t,

Iðν; tÞ → ItypicalðνÞ: ð4Þ
In other words, the essential idea for probing the onset of
quantum pseudorandomness is to measure the MQC
spectrum, and then compare it with ItypicalðνÞ.

Figure 3 shows the experimentally extracted MQC
distributions in our 12-qubit system at the first and second
round of the design Hamiltonian evolution. Here, the initial
state is chosen as ρð0Þ ¼ σ7z with T ¼ 30 ms. The positions
of the π pulses, determined by the randomly generated
array λ, are given in the Supplemental Material [40]. The π
rotations and Hadamard gates are realized by 2 ms shaped
pulses, which are obtained using the scalable pulse com-
piler technique [48,49]. Their simulated fidelities are all
above 98.5%. Pulse imperfections and the decoherence
effect accumulated over the two rounds of evolution are the
primary error sources, which reduce the signal-to-noise
ratio in multiple-quantum signals as high-order coherences
are extremely fragile. Even though, a spreading tendency
for higher-order coherences is clearly evident in the spectra
as shown in Figs. 3(d) and 3(g). In particular, we put the
typical MQC profile ItypicalðνÞ in Fig. 3(g) for comparison,
which is in good agreement with the experimental result.
Thus, the experimentally observed redistribution of spectral
intensity into high-order coherences is a tangible manifes-
tation of the growth of quantum pseudorandomness during
the evolution period.
Discussion.—To generate sufficiently random quantum

processes on a real system requires extensive control over
the system’s degrees of freedom. The NMR platform is well

FIG. 3. (a) Experimental sequence for measuring the MQC spectra. The two rounds of the design Hamiltonian evolution and the
reverse correspond to sequence lengths of 34 ms and 42 ms, respectively. All the π rotations and Hadamard gates cost 2 ms.
(b)–(g) Experimentally measured MQCs of the evolved state ρðtÞ at the first round (b)–(d) and the second round (e)–(g) of the design
Hamiltonian evolution. (b),(e) A chosen set of experimental C7 spectra. Here, ns means the number of scans that we repeat the
experiment to gain a good signal. (c),(f) Multiple-quantum signals observed at varying rotational angles ϕ. The left-right asymmetry is
due to the imperfect time reversal of the dynamics. (d),(g) Profiles for the MQC spectral intensity. The intensity for each order is
normalized relative to the total spectral intensity. It can be seen that the MQCs generated in experiment rapidly spread over the system’s
degrees of freedom.
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suited to study pseudorandomness generation process; e.g.,
the mature MQC technique considerably assists in probing
the amount of randomness. Thus it is an excellent test bed
to realize relevant ideas. Our experimental results demon-
strate that the practical realization of pseudorandom oper-
ators is possible via random control sequences with
reasonable lengths. In particular, there is no need to
perform coupled operations between physically nonadja-
cent spins, and no fine control of the evolution time is
required. However, a major challenge left open is to
quantify the effect of decoherence and control imperfec-
tions. Future work will analyze such issues to gain a better
understanding of the experimental reliability of the design
Hamiltonian approach.
As to the applications of quantum pseudorandomness, a

practical pseudorandomness generator is undoubtedly an
important tool for emerging quantum technologies. Apart
from its vast applications in quantum information science,
generating random quantum processes also benefits many
other fields in quantum physics, e.g., the study of thermal-
ization in isolated quantum systems. In the current frame-
work of investigating thermalizing behaviors, such as
information scrambling [2,3,50], operator spreading
[51,52], and entanglement growth [53,54], randomness
continuously plays a prominent role. These novel theories
will be subject to experimental examinations once high-
dimensional random processes can be made accessible in
practice. In this sense, our work involving 12 qubits takes a
step towards building pseudorandomness generators at
scale. Two accompanying difficulties, the generation and
detection of quantum pseudorandomness, have been over-
come by employing the scalable design Hamiltonian
approach and the MQC indicator, respectively. Because
of the wide applicability of quantum pseudorandomness,
we anticipate the techniques developed and demonstrated
here to find broader applications in future quantum tasks.
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