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Thermal gradients lead to macroscopic fluid motion if a confining surface is present along the gradient.
This fundamental nonequilibrium effect, known as thermo-osmosis, is held responsible for particle
thermophoresis in colloidal suspensions. A unified approach for thermo-osmosis in liquids and in gases is
still lacking. Linear response theory is generalized to inhomogeneous systems, leading to an exact
microscopic theory for the thermo-osmotic flow, showing that the effect originates from two independent
physical mechanisms, playing different roles in the gas and liquid phases, reducing to known expressions in
the appropriate limits.
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When a uniform bulk fluid is placed in a thermal
gradient, mechanical equilibrium quickly sets in via the
force balance condition, implying constant pressure
throughout the system. In the absence of external forces,
the steady state is characterized by a space dependent
density profile and a constant heat flux not associated with
mass current [1]. The action of a thermal gradient on a fluid
then resembles the effect of a fictitious “thermal force” [2],
which has been known to play also a dynamic role since the
first studies in gases [3]. The onset of a stationary fluid flow
induced by temperature gradients (in the absence of
symmetry breaking forces like gravity, when convection
dominates) is named “thermo-osmosis” [10] and only
occurs due to the presence of a confining surface parallel
to the thermal gradient, as already pointed out both in gases
[5–7] and in liquids [11–13]. Thermo-osmosis is believed
to be the driving mechanism for thermophoresis, i.e., the
motion of a colloidal particle in a solvent due to a
temperature gradient [14–16], where the slip of the fluid
in the boundary layer close to the particle’s surface gives
rise to momentum transfer and eventually to particle
motion. Thermo-osmosis is therefore one of the most
fundamental manifestations of thermal forces and its
physical origin is deeply rooted in nonequilibrium statis-
tical mechanics. At the same time, it is of great interest for
applications as a mechanism for governing a particle’s
motion at the nanoscale [17,18].
A unified description of thermo-osmosis is still lacking.

The phenomenon was theoretically investigated mainly in
the gas phase, where the fluid moves from the cold to the
hot side and the characteristic length scale is of the order of
the molecular mean free path [19]. The kinetic theory of
gases has been used in this framework since the seminal
work by Maxwell [7], who showed that the thermal creep is
due to the tangential stress exerted by the gas on the fixed
confining surface in the direction opposite of the temper-
ature gradient. Such a stress, however, requires some

exchange of energy and tangential momentum in the
wall-particle scattering process and therefore depends on
the modeling of fluid-surface interactions. Thermo-osmosis
in the liquid regime is considerably less studied, both
theoretically [13,20–22] and experimentally [13,23–25]. In
addition, as shown in a recent review [26], experiments
often disagree even about the direction of the thermo-
osmotic flow. Nonequilibrium irreversible thermodynam-
ics, based on the concept of local thermal equilibrium, was
first used by Derjaguin et al. to relate the thermo-osmotic
velocity in liquids to the change of the local enthalpy of the
fluid near the confining surface [13,27]. Then, according to
this macroscopic approach, the physical origin of the fluid
motion is due to the modification in the local thermody-
namic properties of the fluid induced by the presence of a
wall, as pointed out in Refs. [28,29]. Clearly, in the rarefied
limit, which Derjaguin et al. do not consider, the argument
must fail because the effects of a hard wall on the (local)
equilibrium properties of the gas disappear at low density.
Only recently have numerical simulations directly tackled
this subtle nonequilibrium problem in the liquid regime
[30–35], but a clear numerical evidence of the correctness
of the Derjaguin formula has not been established yet.
Rather, in Ref. [32] it was pointed out that the Derjaguin
expression cannot be correct because neither the enthalpy
density nor the tangential pressure close to a surface is well
defined on microscopic grounds.
This unsatisfactory setting calls for a first principle

approach to the phenomenon, able to quantitatively evalu-
ate the extent of the thermo-osmotic slip in terms of well-
defined properties of the fluid, which can be measured in
experiments and calculated in numerical simulations. In
this Letter, we present a microscopic description of thermo-
osmosis on the basis of statistical physics: linear response
theory generalized to inhomogeneous and anisotropic
environments. In the case of an imposed uniform thermal
gradient, the use of conservation laws allow us to evaluate
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the velocity profile of the fluid and the thermo-osmotic slip
in terms of both the static and the dynamic equilibrium
properties of the fluid near the surface. In the appropriate
limits the well-known expressions obtained within kinetic
theory and nonequilibrium thermodynamics (Derjaguin)
are recovered by retaining each of these terms, showing that
the gas and liquid regimes are indeed governed by different
physical mechanisms.
The Green-Kubo formalism for linear response theory

[36,37] was generalized by Mori to deal with the thermal
transport coefficients [38,39]. The starting point, as in the
nonequilibrium thermodynamics framework, is the concept
of local equilibrium (LE) mathematically defined by the
many-body distribution function

FLE ¼ Q−1e−
R

drβðrÞÊðrÞ; ð1Þ

where Q is the partition function and the local energy
density ÊðrÞ is expressed in terms of the conserved
densities as

ÊðrÞ ¼ ĤðrÞ − uðrÞ · ĵðrÞ − μðrÞρ̂ðrÞ:

Here βðrÞ, uðrÞ, and μðrÞ are external fields governing the
temperature profile, the fluid velocity, and the local
chemical potential blue (per unit mass), respectively.
ĤðrÞ is the microscopic many-body Hamiltonian density

ĤðrÞ ¼
X
i

δðqi − rÞ
�
p2
i

2m
þ 1

2

X
jð≠iÞ

vðjqi − qjjÞ þ VðqiÞ
�
;

ð2Þ

which describes a system of interacting point particles of
mass m confined by hard walls represented by the external
potential VðrÞ. The operators

ρ̂ðrÞ ¼ m
X
i

δðqi − rÞ;

ĵαðrÞ ¼
X
i

δðqi − rÞpα
i ð3Þ

define the local mass and momentum densities, which,
together with the Hamiltonian density ĤðrÞ introduced in
Eq. (2), satisfy microscopic conservation equations of the
general form

dÂðrÞ
dt

þ ∂αĴ
α
AðrÞ ¼ 0; ð4Þ

where ÂðrÞ is the conserved density, and ĴαAðrÞ is the
corresponding current operator. Here and in the following,
Greek indices represent spatial components of vectors and
tensors and Einstein summation convention is understood.

In our case ĴαAðrÞ represents the mass current ĵαρðrÞ, the
momentum Ĵαγj ðrÞ, and the energy flux ĴαHðrÞ, respectively.
The explicit expressions for the current operators in terms
of the coordinates and momenta of the particles [40] are
reported in the Supplemental Material [43].
The previously defined local equilibrium distribution

function (1) is not a solution of the Liouville equation and
therefore it cannot describe a stationary state. Even if the
system is initially set in a LE state, its distribution function
changes in time in order to reach full thermodynamic
equilibrium. External constraints may, however, keep the
system out of equilibrium, for instance, by enforcing
different temperatures at the boundaries, leading instead
to a nonequilibrium stationary state characterized by
constant fluxes of particles and/or energy and momentum.
Accordingly, FLE cannot be used to evaluate averages
in the resulting stationary state, rather we have to include a
correction term coming from the ensuing dynamics.
It is precisely such a contribution that defines the micro-
scopic expressions of the standard transport coefficients
[37,39,52]. Within linear response theory, the formal
expression of the distribution function is known and reads

F ¼ FLE þ Feq

Z
t

0

dt0
Z

drβðrÞ½∂αĴ
α
Hðr; t0Þ

− uαðrÞ∂γ Ĵ
αγ
j ðr; t0Þ − μðrÞ∂αĵ

α
ρðr; t0Þ�; ð5Þ

where Feq is the underlying grand canonical equilibrium
distribution function defined by the average value of the
(inverse) temperature β and of the chemical potential (per
unit mass) μ, and the time dependence of the current
operators means that they are evaluated after a time lapse t0
from the initial configuration. Averages in the stationary
state can be formally evaluated starting from Eq. (5),
performing an integration by parts and taking the t → ∞
limit [53]. Here we stress that the dynamic corrections in
(5) only involve the divergence of the fluxes introduced in
(4) and the resulting physical averages can be evaluated
without ambiguity, even if the microscopic definition of the
current operators is not unique [40]. For future reference,
we report the final result for the momentum density hĵðrÞi
to linear order in the velocity field uðrÞ and in the spatial
derivatives of the temperature and the chemical potential

hĵαðrÞi¼ hĵαðrÞiLEþ
Z

∞

0

dt
Z

dr0½hĵαðr; tÞĴγHðr0Þi0∂γβðr0Þ

− hĵαðr; tÞĵγρðr0Þi0∂γ½βμ�ðr0Þ
− hĵαðr; tÞĴνγj ðr0Þi0∂γ½βuν�ðr0Þ�: ð6Þ

The averages h…i0 have been evaluated by means of
the underlying equilibrium distribution Feq, and, to
linear order in the velocity field, the LE distribution (1)
gives hĵαðrÞiLE ¼ ρðrÞuαðrÞ. Equation (6) is the formal
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expression of the thermo-osmotic slip in the presence of a
nonuniform temperature field. Notice that (6) also involves
odd-rank tensors, forbidden by space isotropy, because this
general theoretical framework also applies for a fluid close
to an external surface, e.g., a hard wall, which breaks
isotropy defining a preferred direction.
Similar formulas can be derived for the averages of other

physical quantities. The LE average of the momentum flux
operator Ĵαγj ðrÞ gives the pressure tensor at equilibrium
evaluated at the local temperature and chemical potential,
but may also include a nonvanishing off-diagonal contri-
bution, as detailed in the Supplemental Material [43].
However, in any experiment, the external fields βðrÞ,

uðrÞ, and μðrÞ appearing in Eq. (6) cannot be fixed from
the outset but are rather self-consistently determined by the
system, while the experimental setup just defines the
appropriate boundary conditions. Only pressure, temper-
ature, and velocity at the boundaries are given, while the
spatial variation of the same quantities throughout the
sample follow from the conservation equations. In steady-
state conditions, the divergence of the average particle,
momentum, and energy flux must therefore vanish. These
constraints provide five differential equations for the five
external fields appearing in the LE distribution function (1)
leading to the formal solution of the problem.
To proceed further, let us consider a simple “slab

geometry,” where the fluid is confined between two infinite
hard walls placed at a distance h along the z direction. The
equilibrium density profile ρðrÞ is z dependent and the only
nonvanishing components of the equilibrium pressure
tensor define the transverse pxxðzÞ ¼ pyyðzÞ ¼ pTðzÞ and
the normal pressure pzzðzÞ ¼ pNðzÞ ¼ p, which is constant
and equals the bulk pressure p. Furthermore, the width h is
chosen sufficiently large to guarantee that the fluid in the
central region can be considered to a good approximation
unaffected by the presence of the walls (in practice, a few
molecular diameters are sufficient).
A solution to the continuity equations is given by

constant values of ∂xβ and ∂x½βμ�, while the velocity field
uðzÞ is directed along the x axis. Under these assumptions
and within this simple geometry, the stationary continuity
equations for the average mass density hρ̂ðrÞi, the
energy density hĤðrÞi, and the y component of the average
momentum density hĵyðrÞi are identically satisfied.
Furthermore, the conservation law for the normal (z)
component of the momentum density hĵzðrÞi gives rise
to the well-known hydrostatic equilibrium condition

∂αhĴαzj ðrÞi ¼ ∂zpNðzÞjβðxÞ;μðxÞ ¼ 0;

where the normal pressure is evaluated at the local temper-
ature and chemical potential. The only nontrivial continuity
equation comes from the conservation of the x component
of the momentum density, which must be solved imposing
that no pressure gradient is present far from the walls

(“open channel”). The latter condition implies that ∂x½βμ�
can be expressed in terms of the temperature gradient by
∂x½βμ� ¼ hm∂xβ, where hm is the enthalpy per unit mass of
the fluid in the bulk. The detailed derivation is discussed in
the Supplemental Material [43]. Here we report the final
integro-differential equation for the velocity profile

Z
h

0

dz0Kðz; z0Þ∂z0uxðz0Þ ¼ ∂xβSðzÞ: ð7Þ

The kernel Kðz; z0Þ is related to the local viscosity of the
fluid

Kðz; z0Þ ¼ β

Z
∞

0

dt
Z

dr0⊥hĴxzj ðr; tÞĴxzj ðr0Þi0;

and the source term SðzÞ can be written as the sum of
two distinct contributions SðzÞ ¼ SsðzÞ þ SdðzÞ, depend-
ing on the static and dynamic equilibrium correlations,
respectively,

SsðzÞ ¼
Z

z

h=2
dz0

∂pTðz0Þ
∂β

����
p

−
Z

dr0ðx − x0ÞhĴxzj ðrÞP̂ðr0Þi0; ð8Þ

SdðzÞ ¼
Z

∞

0

dt
Z

dr0hĴxzj ðr; tÞĴxQðr0Þi0; ð9Þ

where we have introduced the heat flux operator ĴαQðrÞ¼
ĴαHðrÞ−hmĵαρðrÞ [54] and the operator P̂ðrÞ¼hmρ̂ðrÞ−ĤðrÞ,
whose average in a homogeneous system at equilibrium
reduces to the bulk pressure p. Note that both source terms
vanish in the bulk, implying ∂zuxðzÞ ¼ 0. In the case of a
“closed channel,” where a pressure gradient along the x
direction is present and the integrated mass current must
vanish, the boundary condition should be modified and the
results differ from those reported here.
The solution of this set of equations provides an

expression for the gradient of the velocity field ∂zuxðzÞ
independent of the particular definition of the fluxes in (4),
because the continuity equations only involve divergences
of the fluxes (see [40]). When the result is substituted into
Eq. (6), the final formula for the mass current is found,

hĵxðzÞi ¼ ρðzÞuxðzÞ þ
Z

∞

0

dt
Z

dr0½hĵxðr; tÞĴxQðr0Þi0∂xβ

− βhĵxðr; tÞĴxzj ðr0Þi0∂z0uxðz0Þ�: ð10Þ

All the contributions appearing in Eq. (10) vanish for a
homogeneous system, showing that the physical origin of
thermo-osmosis relies on the existence of a confining
surface [55]. However, the mass flux is not fully determined
by Eq. (10) because the velocity field (and not only its
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derivative) appears in the first term. To resolve this
ambiguity, we have to know the mass flux at a given
height z. This further requirement is not a limitation of the
theory but rather a consequence of the Galilean invariance
(along the x direction) of the equilibrium system which, in
an experimental setup, is broken by the presence of friction
between the fluid and the wall [56]. Instead, in the
simplified model considered here, the wall is represented
by an external confining potential (a hard wall), which does
not modify the tangential (x) component of the particles’
momenta. Supplementing this solution by a suitable (for
instance no-slip) boundary condition for the mass flux,
Eq. (10), allows us to evaluate the thermo-osmotic flow in
slab geometry: We first have to solve Eq. (7) for uxðzÞ and
then substitute the result into Eq. (10).
The above analysis of a model of a simple fluid close to a

wall is exact, within linear response theory, and shows that
two distinct mechanisms give rise to thermo-osmosis, both
related to interface physics: the presence of anisotropies in
the pressure tensor close to the wall [see Eq. (8)] and the
effect of a confining surface on the dynamic correlation
functions [see Eq. (9)]. We now consider two limiting
situations in which these terms play a very different role in
order to clarify their relevance in providing the required
thermal force.
In liquids, we expect that the correlations can be

estimated by their bulk value and the kernel Kðz; z0Þ is
taken to be a short-ranged function

Kðz; z0Þ ∼ ηδðz − z0Þ; ð11Þ

where η is the bulk viscosity of the fluid. Under these
assumptions, only the local equilibrium terms survive and
the thermo-osmotic velocity reduces to uxðzÞ given, for
z < h=2, by

uxðzÞ ¼ −
∂xT
η

∂
∂T

����
p

Z
h=2

0

dz0 minðz; z0ÞΔpTðz0Þ; ð12Þ

where ΔpTðzÞ ¼ pTðzÞ − p and the derivative is evaluated
at fixed bulk pressure. This result coincides with the
solution of the linearized Navier-Stokes equation for an
incompressible fluid in the presence of a gradient in the
tangential pressure given by the LE expression [15].
Moreover, Eq. (12) reduces to the generalization of the
result of Derjaguin et al. [27] recently provided in Ref. [32]
in the context of nonequilibrium thermodynamics, where
the enthalpy difference ΔhðzÞ ¼ hðzÞ − ρðzÞhm takes the
place of the temperature derivative of ΔpTðzÞ. All the
details about (12) and the continuum limit can be found in
the Supplemental Material [43]. Finally, the temperature
derivative of the pressure tensor has been recently evaluated
by numerical simulations [29,32] for a Lennard-Jones fluid.
Use of the numerical results [32] allows us to estimate that
the thermo-osmotic velocity for hard walls is opposite of

the thermal gradient and of the order of few micrometer per
second.
In the opposite low density limit, where kinetic theories

provide a quantitative interpretation of the phenomenon
[19,57], our formalism is also able to reproduce the
known results. Taking the ideal gas limit, i.e., ignoring
the interparticle interactions, the gas remains homogeneous
and isotropic in the z direction also close to the surface,
implying that SsðzÞ ¼ 0. The dynamic source term SdðzÞ
can be estimated introducing a finite relaxation time τ and
retaining only the kinetic contribution to the equilibrium
average in (9) as

Z
τ

0

dt
X
i

�
δðr−riðtÞÞ

px
i p

x
i ðtÞpz

i ðtÞ
m2

�
p2
i

2m
−mhm

��
0

: ð13Þ

However, as shown in the Supplemental Material [43], this
term vanishes in our model because the averaged operator
is odd in pz and the ballistic kinetics of an ideal gas
conserves both the x component of the momentum and the
particles’ kinetic energy and also when scattering at the
confining wall takes place. A nonzero value of the average
in (13), and accordingly of the creep velocity, can only be
obtained if, during the scattering at the surface, at least one
of these two conservation laws are violated, as already
known in the literature [7]. The first case corresponds to
elastic scattering against rough surfaces, whereas the
second case can occur due to inelastic particle-surface
collisions. Inspired by the seminal work by Maxwell [7],
we assume that, after the collision with the surface, the
outgoing particle loses memory of the magnitude and the
direction of its momentum before the impact. Within this
hypothesis, the time-correlation functions vanish after the
scattering and (13) can be evaluated analytically, leading to
the following expression for the thermo-osmotic velocity
v∞ far from the surface (the derivation is detailed in the
Supplemental Material [43]):

v∞ ¼ 3

4

η

ρ

∂xT
T

¼ 3

4
kBT

η

p
∂xT
T

; ð14Þ

which coincides with the kinetic theory result originally
obtained by Maxwell [7,57] and shows how the slip
velocity grows at low pressure, as experimentally demon-
strated [19].
In summary, our generalization of the linear response

theory formalism to inhomogeneous systems, applied to a
simple microscopic model of fluid close to a planar smooth
wall, has provided the general, exact, expression allowing
us to evaluate the thermo-osmotic flow. The emerging
picture turns out to be more complex than expected on the
basis of the previously adopted theoretical approaches,
making use of kinetic theories as regards low pressure and
rarefied gases and macroscopic linear irreversible thermo-
dynamics for the liquid phase. The resulting velocity profile
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of the fluid (10) is valid for all regimes and depends on both
static and dynamic equilibrium properties of the system
[see Eqs. (7) and (10)]: these expressions will be useful in
the interpretation of future experiments and numerical
simulations in the whole phase diagram of a fluid. A
preliminary comparison with the existing macroscopic
approach by Derjaguin et al. shows that it closely resembles
one of the two contributions found in our general expres-
sion. The other, instead, allows us to reproduce the known
expressions of the kinetic theory of gases in the appropriate
limits.
Although our result is expressed in terms of quantities,

like the tangential pressure near the wall and the heat flux,
which are not uniquely defined on microscopic grounds,
the combination of these terms [see, for instance, Eq. (8)] is
indeed independent of the adopted choice, thereby solving
the problem posed in Refs. [32,33].
Our method is general: the results presented in this Letter

can be easily extended to a closed channel, where the
relevant quantity is the pressure difference between the two
ends of the system and can be applied also to other simple
geometries, like spherical geometry, where it may provide
insights on the microscopic mechanism at the basis of
thermophoresis.
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