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The motion of active polymers in a two-dimensional porous medium is shown to depend critically on
flexibility, activity, and degree of polymerization. For a given Péclet number, we observe a transition from
localization to diffusion as the stiffness of the chains is increased. Whereas stiff chains move almost
unhindered through the porous medium, flexible ones spiral and get stuck. Their motion can be accounted
for by the model of a continuous time random walk with a renewal process corresponding to unspiraling.
The waiting time distribution is shown to develop heavy tails for decreasing stiffness, resulting in
subdiffusive and ultimately caged behavior.
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Understanding the motion of biological agents in porous
media is essential for a wide range of biological, medical,
and industrial processes. Mucus, a hydrogel which coats
the stomach and other intestinal walls, serves as an
important defense against invading bacteria [1–4]. In
fighting cancer, bacteria are now engineered to sense the
porous environment of a tumor [5,6]. Other bacteria such as
myxobacteria glide in the porous environment of soil and
synthesize a number of biomedically useful chemicals [7].
Yet another example of active motion in a porous medium
is the crowded world of a cell, in which active filaments
move in a polymeric gel. Technical applications involve the
motion of bacteria in porous media in the context of oil
recovery [8], water purification, and decomposition of
contaminants trapped in the ground [9,10].
It is known that the dynamics of biological agents in

porous media is strongly influenced by their shape, size,
and properties of the media such as the pore sizes [11–13].
In spite of many experimental studies on the motion of
active elongated agents in porous media [14–21], theoreti-
cal approaches are sparse [22–24]. In contrast, the flow of
passive polymers in porous media has been studied
extensively. Whereas flexible chains can be represented
by a sequence of blobs [25] whose size is determined by the
cavities of the porous media, the dynamics of stiff polymers
was found to follow the reptation picture [26] with,
however, different kinetic exponents.
Bacteria and many other microorganism have an elon-

gated shape and resist deformations with a finite stiffness.
Their flexibility plays an important role in their dynamics:
While stiff active filaments such as microtubules form large
coherently moving bundles [27–29], active agents with
flexible bodies, such as bacteria, have been found to form
slowly diffusing spirals [30]. Analytical and numerical
studies of active filaments have revealed that bundles and
spirals form in different regions of phase space, solely
determined by the activity and stiffness of the chains [31–

33]. Flexibility is even more important in a crowded
environment: a large number of biological agents maximize
their transport by deforming their shape depending on the
environment and interaction with other objects [34,35]. The
interest in active elongated agents is further driven by new
developments to prepare them in vitro [36–38] and syn-
thesize them, e.g., by means of bonding several Janus
colloidal spheres through electric fields [39], and also by
immersing chains of passive colloidal particles in an active
bath, where directed transport has been observed [40].
In this work we analyze the motion of self-propelled

filaments in a two-dimensional porous medium with the
help of numerical simulations, supported by analytical
arguments. Our main result is a phase diagram with a
diffusive and a localized phase, whose intuitive interpre-
tation is based on the competition between the activity
driving the polymers through narrow channels and the
flexibility favoring a spiraling, or more generally, folded,
state of the filaments which then are caged in the porous
medium.
Our model consists of three parts: a standard model for a

semiflexible chain, overdamped dynamics of the chain
including active beads, and an ensemble of static obstacles.
We consider a wormlike chain, consisting of M active
beads of radius R at positions ri, i ¼ 1; 2;…;M. The
potential energy Upol ¼ Us þ Ub þ Ue of the chain has
three contributions. The connectivity of the chain is
modeled by springs with spring constant Ks and rest length
b. The bending energy is given by

Ub ¼
Ka

2

XM−1

i¼2

ðθi − πÞ2; cos θi ¼
ri;i−1 · riþ1;i

ri;i−1riþ1;i
; ð1Þ

with ri;i−1 ¼ ri − ri−1 and bending stiffness Ka. The
excluded volume is modeled as a contact potential:
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Ue ¼
1

2
Ke

X

i≠j
ðri;j − 2RÞ2θð2R − ri;jÞ: ð2Þ

We are interested in approximately hard particles of fixed
bond length and hence take both Ks and Ke to be large. To
avoid chain crossings, the bond length b ¼ 2.1R is chosen
only slightly larger than the diameter of the beads. This
leaves us with one free parameter, namely the bond
stiffness Ka, or rather the persistence length ξ=L ¼
2bKa=ðLkBTÞ relative to the contour length L ¼ Mb.
The dynamics of the chain is assumed to be overdamped,

γ _ri ¼ Factti −∇iU þ ηi: ð3Þ

The active force has amplitude Fact and points along the
tangent of the polymer contour, ti ¼ ðri;i−1 þ riþ1;iÞ=
jri;i−1 þ riþ1;ij. The potential U includes Upol as well as
the interactions with the obstacles, yet to be specified. The
damping constant is denoted by γ and the random noise is
chosen in accordance with the fluctuation dissipation
theorem: hηiðtÞ · ηjðt0Þi ¼ 4kBTδijγδðt − t0Þ. It is conven-
ient to work with dimensionless equations. Hence we
measure length in units of particle radius R, energies in
units of kBT, and time in units of t0 ¼ R2γ=ðkBTÞ. In these
units the active force is given by ðFactRÞ=ðkBTÞ and
represents the second control parameter besides the per-
sistence length. Actually, it is more convenient to multiply
this quantity by the dimensionless factor L2=ðbRÞ in order
to obtain the Péclet number Pe ¼ ðFactL2Þ=ðbkBTÞ, which
is defined as the ratio of the convective transport to the
diffusive transport.
So far our model is the same as the one used in Ref. [32].

However, here we are interested in the dynamics of semi-
flexible chains in a crowded environment. We introduce N
static obstacles of radius Ro randomly into a two-dimen-
sional square box of size l. The interactions between
particles and obstacles are modeled as elastic collisions,
reversing the normal component of the relative velocity
[41]. We impose the constraint that obstacles do not
overlap, so that their packing fraction is given by
ϕ ¼ NπR2

o=l2. Of particular interest is a porous medium
with a typical pore size, which is modeled with the help of
an additional constraint: the relative distance between any
two obstacles is at least 2Ro þ 2.5R, allowing single beads
to pass in between two obstacles. The central questions of
our study are the following. Are the polymers free to move
through the medium or are they localized? How does their
dynamics depend on chain length, stiffness, and Péclet
number? A similar porous medium has been set up in a
recent experiment [15], where the motion of bacteria in the
presence of randomly placed pillars in microfluidic chips
has been studied.
Equation (3) was integrated using HOOMD-BLUE

[42,43] with an in-house modification to include the active
force along the tangent of the polymer contour. Simulations

were performed on graphical processing units. We setKs ¼
Ke ¼ 500kBT=R2 andM ¼ 30 unless stated otherwise, and
explore a large parameter space for Pe and ξ=L by varying
Fact and Ka. Measurements are carried out after an initial
time lapse, and for as long as 106t0.
The central topic of our Letter is the selective localization

of stiff and flexible polymers in an obstructed medium.
Before addressing this subject in detail, we comment on the
diffusion of semiflexible polymers in an unobstructed
environment which has been discussed in recent literature
[32,33,44]. One of the most prominent results is the
spiraling phase, where flexible polymers form persistent
spirals. We of course also observe these states, sometimes
the flexible polymers spiral around an obstacle, provided
their contour length is larger than the circumference of the
obstacle. These results are to be expected and a sample
configuration is shown in Fig. 1. The stiff polymers tend to
follow the obstacles only for short sections of their contour
length, compromising the cost of bending energy and
activity FactL. This qualitatively different behaviour
is at the heart of the selective transport, discussed in detail
below.
For a single polymer, obeying the dynamics of Eq. (3),

we can compute the center of mass diffusion (without
obstacles) because all interactions are pairwise and do not
contribute to the c.m. motion:

_Rc:m: ¼
Fact

γL
Re þ

1

M

XM

i¼1

ηi: ð4Þ

Here Re denotes the end-to-end vector. Since the activity
points along the contour, the polymer motion is well
approximated by “railway motion” [32], allowing for the
computation of the end-to-end vector within the Kratky-
Porod model. The mean square displacement (MSD) then
follows

h(RðtÞ −Rð0ÞÞ2i ¼ 4Dtt

þ 2ξFact

γ
fðL=ξÞ½tþ ðe−Drt − 1Þ=Dr�:

ð5Þ

FIG. 1. Flexible polymers (left) spiral, sometimes around the
obstacles; stiff polymers (right) bend only slightly to pass around
an obstacle.
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The activity induced rotational diffusion constant is given
by Dr ¼ Fact=ðξγÞ [32] and fðxÞ ¼ 2ðe−x − 1þ xÞ=x2.
The dynamics is diffusive for short times with bare
diffusion constant Dt ¼ ðkBTÞ=ðγMÞ, ballistic for inter-
mediate times, and diffusive again at long times with,
however, an enhanced diffusion constant Deff ¼ Dtþ
FactξfðL=ξÞ=ð2γÞ, due to the activity of the chain.
Our focus here is on the dynamics of active polymers in a

porous medium. As a first step we have computed the MSD
for various values of the parameters for filling fraction
ϕ ¼ 0.6. An example is shown in Fig. 2 for M ¼ 30 and
varying stiffness. For ξ=L < 0.2, we observe three different
regimes: ballistic due to activity at small t, diffusive at
intermediate t, and saturated or caged for the largest t. For
larger ξ=L, the polymers are seen to move through the
whole sample; for ξ=L ¼ 0.33, one can still observe the
crossover from ballistic to diffusive motion, whereas for
very large ξ=L the motion is ballistic almost up to system
size. Some trajectories of the very stiff polymers are
depicted in the left-hand panel of Fig. 3 [see also
Supplemental Material (SM) [45]].
If not all flexible polymers are localized, then the mobile

ones will dominate the MSD for long times. Hence we need
a better indicator for localization, e.g., the fraction of

polymers which have moved less than a given distance
d, comparable to the system size. We define QðtÞ ¼
hθ(d − jRðt0 þ tÞ −Rðt0Þj)i, where the average is over
many different polymers. We show QðtÞ for d ¼ l=8 in
Fig. 4 for the same data as in Fig. 2. One clearly observes a
time-persistent part for the smallest values of ξ=L, indicat-
ing that a finite fraction of the polymers is localized in good
agreement with the data from the MSD. Furthermore, the
relaxation time of QðtÞ grows with decreasing ξ=L and
diverges at the critical ξ. The inset in Fig. 4 displays the
time τQ, when more than 20% of the particles have moved
by more than d.
Flexible polymers are localized in the porous medium

because they tend to spiral or fold into a dense state which
does not allow them to pass through the narrow channels.
To quantify this statement, we have computed the radius of
gyration for the above set of parameters, i.e., ϕ ¼ 0.6 and
M ¼ 30. The result is plotted in the inset of Fig. 5; a clear
transition is observed from the dense to the extended state
at around ξ=L ¼ 0.2. To pass through the narrow channels,
the polymers have to unspiral, which is a rare event, even in
a system without obstacles and more so in the presence of
obstacles. This can be demonstrated by monitoring the
fraction of polymers which have not unspiraled once in
time t. We denote this fraction by YðtÞ and plot it for
various values of the stiffness in Fig. 5. One clearly
observes a time-persistent part for ξ=L ≤ 0.2.
How do these results depend on Péclet number?

Spiraling of flexible polymers is enhanced by high activity
or high Péclet number, as evidenced by the strong spiraling
regime in Ref. [32]. Hence, increasing the Péclet number
implies a stronger tendency to localization, as displayed in
the phase diagram shown in Fig. 6: even stiffer chains get
localized with increasing Pe. On the other hand, high
activity favors directed motion in the extended state. For
Pe ≥ 3000, we observe an increased fraction of time in the
extended state and hence also an increase in the size of the

FIG. 2. Mean square displacement of active chains for Pe ¼
945 and different values of stiffness: from ξ=L ¼ 0.07 (Ka ¼ 1)
to ξ=L ¼ 5.33 (Ka ¼ 80) at ϕ ¼ 0.6. The black line indicates the
system size.

FIG. 3. Trajectory Rc:m:ðtÞ of stiff filaments (ξp=L ¼ 30) for a
time span τ ≈ 2000 (left). Trajectory of a flexible filament, which
curls up and rarely jumps to nearby sites (right).

FIG. 4. Fraction of polymers QðtÞ which have moved less
than d ¼ l=8 in time t for several values of persistence length.
Inset: Relaxation time τQ, when QðtÞ has decayed to 20% of its
initial value.
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random steps taken in the extended state, giving rise to
diffusion for the largest Pe (see SM [45]). Localization also
depends on the degree of polymerization M. Whereas the
dynamics of the very stiff filaments is hardly affected,
spiraling and hence localization can only occur for suffi-
ciently long chains (see SM [45]).
Flexible polymers have to unwind before they can move

through the narrow channels of the obstructed environment.
Our simulations show that a flexible chain is most of the
time in a dense state, unspirals infrequently, makes a
sudden jump in the extended state, and immediately curls
up again (see right-hand panel of Fig. 3 and SM [45]). In a
simple model, we neglect the time span in the stretched
state so that the dynamics can be modeled by instantaneous
jumps of typical size ΔR, separated by random time
intervals τ. The unspiraling of the flexible polymers then
corresponds to the renewal process of a continuous time

random walk (CTRW) [46]. The “renewals” are the
unspiraling events, allowing the polymer to make a
displacement. The central quantity is the distribution of
waiting times ψðτÞ, where τ denotes the difference between
two unspiraling events.The mean square displacement,

h(RðtÞ −Rð0ÞÞ2i ¼ hnðtÞiΔR2; ð6Þ

is expressed in terms of hnðtÞi, the mean number of jumps
in time t. It can be calculated from ψðτÞ:

hnðsÞi ¼ ψðsÞ
s½1 − ψðsÞ� : ð7Þ

Here we have introduced the Laplace transform of nðsÞ ¼R
t
0 dtnðtÞe−st and similarly for ψðsÞ. The low frequency
behavior of ψðsÞ determines the longtime behavior of
hnðtÞi and hence the MSD. If ψðsÞ ∼ 1 − shτi is regular
for samll s, then the MSD displays ordinary diffusion. If, on
the other hand, ψðsÞ ∼ 1 − Asα with α < 1, then the MSD
is given by [47]

h(RðtÞ −Rð0ÞÞ2i ¼ ΔR2

AΓð1þ αÞ t
α: ð8Þ

Hence, subdiffusive behavior should occur and saturation
for α ¼ 0. We have measured ψðτÞ for several values of
stiffness Ka. An example is shown in Fig. 7. One clearly
observes a heavy tail with an algebraic decay approxi-
mately like t−1.3, which implies subdiffusive behavior
h(RðtÞ −Rð0ÞÞ2i ∼ t0.3 for the MSD. Because of limited
simulation time, we are missing the very long times, which
would lower the exponent to even smaller values. In the
inset of Fig. 7, we compare the MSD from our simulations
to the result of CTRW as given in Eq. (6).

FIG. 5. Fraction of polymers which have not at least unspiraled
once in time t. Parameters are ξ=L ¼ 0.07, 0.20, 0.33 from top to
bottom, ϕ ¼ 0.6,M ¼ 30. Inset: Radius of gyration as a function
of ξ=L; fully extended state corresponds to RG ∼ 330.

FIG. 6. Phase diagram in the ξ=L and Pe plane. Parameters are
ϕ ¼ 0.6 andM ¼ 30. Triangles, localized phase; circle, diffusive
regime.

FIG. 7. Waiting time distribution ψðτÞ for ξ=L ¼ 0.07 and
Pe ¼ 945. Inset: Comparison of MSD computed from Eq. (6)
with simulations.
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In conclusion, active polymers in porous media show
unexpected, rich behavior. Whereas stiff chains are able to
cross the porous medium from one side to the other, flexible
chains spiral and are caged. Thus, a localization transition
occurs as a function of chain stiffness and Péclet number.
We have worked out the phase in the ξ=L − Pe plane and
estimated the effects of chain length. Localization of
flexible chains occurs due to the persistence of the spiraling
state. Identifying unspiraling as a renewal event, we can
model the dynamics of flexible chains as a continuous time
randomwalk. The distribution of waiting times between the
renewal events was shown to develop a heavy tail, as the
localization transition is approached, giving rise to sub-
diffusive behavior and ultimately caging.
Many extensions of our work lie ahead: Porous media

exist in a variety of geometries and topologies, giving rise
to correspondingly diverse dynamics of active polymers.
An example is the interplay of pore size, filling fraction,
and chain length in a dense gel. Another possible extension
are more general models of a crowded environment, which
is not strictly static but moving slowly as compared to the
active agent (see Supplemental Material [45]). Other
mechanisms of activity are also of interest, such as a
dragged chain or the inclusion of a tumbling compo-
nent [48].
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