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We investigate the electronic structure of a twisted multilayer graphene system forming a moiré pattern.
We consider small twist angles separating the graphene sheets and develop a low-energy theory to describe
the coupling of Dirac Bloch states close to the K point in each individual plane. Extending beyond the
bilayer case, we show that, when the ratio of the consecutive twist angles is rational, a periodicity emerges
in quasimomentum space with moiré Bloch bands even when the system does not exhibit a crystalline
lattice structure in real space. For a trilayer geometry, we find flatbands in the spectrum at certain rotation
angles. Performing a symmetry analysis of the band model for the trilayer, we prove that the system is a
perfect metal in the sense that it is gapless at all energies. This striking result originates from the three Dirac
cones which can only gap in pairs and produce bands with an infinite connectivity. It also holds
quite generally for multilayer graphene with an odd number of planes under the condition of C2zT
symmetry.
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Two parallel layers of graphene twisted by a small angle
exhibit a moiré pattern [1], with a lattice periodicity much
larger than the graphene unit cell, and nontrivial electronic
properties [2], such as band flattening at certain magic
angles [3–8]. Flatbands present a reduced kinetic energy,
thereby artificially boosting electron correlations [9]. The
recent discovery of correlated insulating phases at half
filling and possibly unconventional superconductivity [10–
13] has unveiled bilayer moiré graphene as a tunable device
for exploring novel correlated states, at zero or finite
magnetic field, spurring intense theoretical work in this
direction [14–35]. On the other hand, moiré bands were
also investigated for their topological properties [36–42],
and topological phase transitions were identified close to
the magic angles [39,43].
In view of the great wealth of correlation and topological

phenomena occurring with moiré bilayer graphene, it is
desirable to extend studies to multilayer, and specifically
trilayer, geometries in which moiré patterns also appear for
small rotation angles. Flatbands in bilayer result from an
interplay between the K (or K0) Dirac points in each layer
and the situation with three or more Dirac points has yet to
be explored. At low energy and close to half filling, the
band structure is formed only from the electron states of the
Dirac cones in each layer [44]. A moiré band theory
describing such a state, that does not require a crystalline
lattice, is built in Ref. [3]. In this Letter, we extend this
theory to multilayer graphene and discuss in depth the
symmetry and topology for three layers. We find magic
angles of vanishing Dirac velocities; they are not related to
a complete flattening of the spectrum, rather by a flattening

along certain symmetry lines. We also characterize the
different moiré bands by the irreducible representations
they generate at the high-symmetry points and lines. Based
on the compatibility between these representations [45,46],
we are able to prove the remarkable result that all bands are
connected such that no subset of bands can be energetically
isolated from the others. The most obvious consequence
is that the system remains metallic at arbitrary energy.
This property requires particle-hole (p-h) symmetry—
neglecting the band curvature in the vicinity of the original
K points. Nonetheless, slightly breaking this symmetry
does not open a gap [47].
Bloch band coupling.—We detail the derivation of the

band structure of the moiré pattern in twisted multilayer
graphene. When the twisting angle is small, a moiré pattern
is formed by the interference of lattices between the
different layers. Restricting the analysis to Dirac fields
near the K points of each layer [3,7,44] (see also Ref. [49])
and assuming a local short-range tunnel amplitude between
atoms in consecutive planes, one derives the following
Hamiltonian:

HðabÞðδpa; δpbÞ ¼ vFδp · σδa;b

þ wab
X3

j¼1

δδpa;δpbþqa;bj
Tj; ð1Þ

where wab are hopping energies between the neighboring
layers a and b. The first term in Eq. (1) represents the Dirac
cones in each layer and δp is a small momentum deviation
from the K point for the layer a. We have introduced the
matrices
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Tjþ1 ¼ σ0 þ cosð2πj=3Þσx þ sinð2πj=3Þσy ð2Þ

associated with the three symmetric momentum directions
qa;b
1 ¼ MabK −K, qa;b

2 ¼ C3zq
a;b
1 , qa;b

3 ¼ C3zq
a;b
2 . Mab is

the rotation around z with the twist angle θab separating the
layers a and b and C3z with angle 2π=3. For small twist
angles, qa;b

1 is perpendicular to K so that all the qab
j are

parallel for fixed j (see below).
The magnitudes of the vectors jqa;b

j j ¼ 2jKj sinðθab=2Þ
depend on the twist angles. The second term in Eq. (1)
couples momenta δpa and δpb þ qa;b

j in layers a and b
which generates a lattice in momentum space for each pair
of consecutive layers. To make the calculation tractable and
maintain an emergent periodicity in momentum space
regardless of whether the multilayer system itself is
crystalline, one has to assume that the ratios of twist angles
are rational numbers. This periodicity results in moiré
bands which we compute numerically and classify accord-
ing to their irreducible representations at the high-
symmetry points and lines. On the contrary, if the twist
angles were incommensurate, or the qab

j vectors are not
parallel for fixed j, then successive applications of the
Hamiltonian Eq. (1) would reach arbitrary momentum and
the moiré periodicity would be absent.
The Hamiltonian Eq. (1) reduces to the model of Ref. [3]

for bilayer and we henceforth focus on the trilayer
geometry. We take the rotation angle θ12 as a reference
and introduce the moiré magnitude kD ¼ 2jKj sinðθ12=2Þ.
We rescale all momenta by kD and the Hamiltonian as
H̃ ¼ H=ðvFkDÞ. Fixing the direction of qa;b

1 along y, we
use the complex notation

q231 ¼ eiðπ=2Þ; q232 ¼ eið7π=6Þ; q233 ¼ e−iðπ=6Þ; ð3Þ

and q12j ¼ ðp=qÞq23j for all j, where p and q are coprime
integers. The Hamiltonian Eq. (1) can then be written as

H̃QmQn
ðkÞ ¼ ðk −QmÞ · σδmn þ α

X

j

TjδQm;Qn−qmn
j
; ð4Þ

where we assume a uniform tunnel amplitude wab ¼ w and
introduce the dimensionless coupling α ¼ w=ðvFkDÞ
between Dirac cones. The vectors Qm form a k-space
lattice, see Fig. 1(b), where each site is associated to a
specific layer.
Equal twist angles.—We first consider the most sym-

metric case of evenly rotated planes where q12j ¼ q23j . A
representative set of moiré spectra obtained from Eq. (4)
with different values of the coupling α is displayed in
Figs. 2(a)–2(d). The moiré bands exhibit a rich structure.
The first remarkable feature is that all bands are connected:
it is impossible to isolate a set of bands that are detached
from the rest. We provide below a formal proof for this
statement based on irreducible representations at symmetric

points and lines, and afterwards extend it to arbitrary p
and q.
Three Dirac cones are attached at zero energy to the

points Γ, KM, and K0
M [see Fig. 1(b)] as α is varied. We

display the corresponding Dirac velocities of the cones at Γ
and KM (with K0

M velocity linked by symmetry to that of
KM) in Fig. 2(e) and find a set ofmagic angles—in analogy
with the bilayer case—where one of these velocities
vanishes. The difference with the bilayer case is that these
magic angles are not associated with a flattening of the
whole spectrum which would be at odds with the fully
connected band structure. However, we do see a flattening
of part of the spectrum close to magic angles: on the
M − KM line (for the second levels) when α ¼ 0.28, close
to Γ when α ¼ 0.85, for the first two magic angles. This
flattening along one-dimensional directions in k space
opens interesting perspectives for the realization of exotic
correlated many-body physics. Of course the property of a
gapless spectrum cannot result in a quenched kinetic energy
as occurs in the bilayer case [3–8]. However, tuning the
chemical potential close to flat regions of the spectrum
increases strongly the density of states and is likely to lead
to instabilities towards charge-ordered or superconducting
anisotropic phases [50,51].
Symmetries.—The moiré reciprocal lattice vectors

b1 ¼ q121 − q122 , b2 ¼ q121 − q123 generate the whole lattice
in Fig. 1(b). The different layers (colors) are coupled by the
qa;bj vectors. Bloch periodicity takes the form

H̃ðk − biÞ ¼ VbiH̃ðkÞVbi†; Vbi
Qm;Qn

¼ δQn;Qmþbi : ð5Þ

The spectrum is thus invariant upon shifting the origin of k
by a combination of b1 and b2.

(a)

(c)

(b)

FIG. 1. Trilayer graphene with the same rotation angle θ12 ¼
θ23 between consecutive layers. (a) Original Brillouin zones in
each layer with their respective K points. (b) k-space lattice
generated by the vectors qab

j (for q12
j ¼ q23

j ). Green, red, and blue
sites belong, respectively, to the layers 1,2,3. (c) Moiré Brillouin
zone with high-symmetry points Γ, KM, K0

M, M and high-
symmetry lines (in black).
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The moiré lattice also transforms into itself by the action
of a 2π=3 rotation C3z around Γ. In the Hamiltonian
language, the corresponding operator is given by
C3z ¼ expði2πσz=3ÞδQm;C3zQn

. We note that if Qn is in a
given layer, so is C3zQn, such that the three layers are not
mixed by the rotation. The C2x symmetry operates a
reflection across the x axis going through the Γ point
[red dot in Fig. 1(b)]. As such, C2x sends lattice sites of
layer 1 to 3 and vice versa but keeps layer 2 invariant. The
corresponding symmetry operator is C2x ¼ σxδQm;C2xQn

.
The two symmetry operators induce the Hamiltonian
transformation,

C3zH̃ðkÞC†3z ¼ H̃ðC3zkÞ; C2xH̃ðkÞC†2x ¼ H̃ðC2xkÞ; ð6Þ

which leave the spectrum invariant. The antiunitary C2zT
symmetry acts locally on the moiré lattice. It takes complex
conjugation K and reverses the pseudospin direction. It is
represented by the operator C2zT ¼ σxδQm;Qn

K, which

squares to 1 and commutes with the Hamiltonian H̃ðkÞ.
It also commutes with the spatial symmetries C3z and C2x.
The moiré model also possesses a unitary particle-hole

symmetry. The original k · p Dirac Hamiltonian of the
single layer graphene sheet HðkÞ ¼ k⃗ · σ⃗ has a unitary
particle-hole symmetry HðkÞ ¼ −Hð−kÞ due to the
absence of k2 terms in the Hamiltonian. Since our model
is based on this low-energy expansion, it retains a similar
symmetry with the operator

P ¼ δQm;−Qn
ζQn

; ð7Þ

where ζQn
is þ1 for Qn belonging to the lower and top

layers and −1 for the middle layer. With this, we have
P2 ¼ PP† ¼ 1. Importantly, one checks that P commutes
with all other symmetry operators, C3z, C2x and C2zT , and
satisfies

PH̃ðkÞP† ¼ −H̃ð−kÞ: ð8Þ

This is to be contrasted with the p-h operator Pbi identified
[39] for moiré bilayer which has (i) P2

bi ¼ 1 and (ii) anti-
commutes with C2x, i.e., fPbi; C2xg ¼ 0, instead of the
commutation found for P.
Based on the generators discussed so far, the symmetry

group of the moiré lattice is the magnetic space group
called P60202 (no. 177.151 in the BNS notation [52]).
Although the same group describes moiré bilayer, the
physics is different here. It indeed originates from three
Dirac cones, instead of two, and the extra particle-hole
symmetry is essentially different. The high-symmetry
points and their little cogroups are Γ (C2x; C3z; C2zT ;P),
KM (C3z; C2zT ;PC2x), and M (C2x; C2zT ;P). The sym-
metries on the high-symmetry lines are Γ −M (C2x, C2zT )
and Γ − KM (C2xP; C2zT ). The classification of the differ-
ent irreducible representations at the symmetric points and
lines are given in Table I. At Γ, M, KM and on the line
Γ −M, each energy or band in Fig. 2 is characterized by a
certain representation determined from the character, i.e.,
from the eigenvalues of the operators C3z and C2x restricted
to this (possibly degenerate) energy.
First proof of all-connected bands.—We now prove by

contradiction that all bands are connected such that there is

(a) (b)

(c)

(e)

(d)

FIG. 2. Moiré bands (a)–(d) and renormalized Dirac-point
velocities (e) at the symmetric points Γ (red line) and KM (green
line). The eight bands closest to zero energy are represented along
the moiré Brillouin zone trajectory −M → Γ → M → KM → Γ
for α ¼ 0.2, 0.28, 0.42, 0.85 (a)–(d). The particle-hole symmetry
discussed in the main text—sending k to −k and E to −E—is
clearly visible along the path −M → Γ → M. (e) Velocities of the
two Dirac cones at Γ and KM as function of α.

TABLE I. Character table of irreducible representations at high-
symmetry momenta and lines in magnetic space group P60202. E,
C3, and C2 represent the conjugation classes generated from
identity, C3z and C2x. The notation ΓMi stands for the symmetric
line Γ −M.

Γ1 Γ2 Γ3 M1 M2 K1 K2K3 ΓM1 ΓM2

E 1 1 2 E 1 1 E 1 2 E 1 1
2C3 1 1 −1 C2 1 −1 C3 1 −1 C2 1 −1
3C2 1 −1 0 C−1

3
1 −1
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no gap in the spectrum at any energy. We assume a
subspace of isolated bands between the energies ε1;k and
ε2;k. By p-h symmetry, a symmetric set of bands exists in
the energy window ð−ε2;−k;−ε1;−kÞ and, consequently, the
N1 bands between −ε1;−k and ε1;k must be disconnected
from all other bands. We focus on these N1 bands and
investigate their transformation property under C2x. C2x
remains a symmetry along the line connecting Γ and M
such that their total character must coincide at each end,
or χC2Γ ¼ χC2M.
We callmΓi

the multiplicity of the representation i ¼ 1, 2,
3 in the set of N1 bands, and mMi

the multiplicity of the
representation i ¼ 1, 2 in the set ofN1 bands atM. Hencewe
have the equationsmΓ1

þmΓ2
þ2mΓ3

¼N1,mM1
þmM2

¼N1,
mΓ1

−mΓ2
¼ χC2Γ, and mM1

−mM2
¼ χC2M, which leads to

mM2
¼ mΓ2

þmΓ3
: ð9Þ

For α ¼ 0, we have three Dirac cones around Γ,KM, andK0
M

and a gapped spectrum atM. At Γ, the zero-energy subspace
is doubly degenerate and the character of C3z is simply given
by Trðeið2π=3ÞσzÞ ¼ −1 corresponding to the irreducible
representation Γ3 as indicated in Table I. We thus have
mΓ3

¼ 1,mM2
¼ mΓ2

¼ 0when restricted to zero energy and
α ¼ 0. Increasing α away from zero, the P symmetry is
maintained and commutes with C3z and C2x such that any
band associated to a given representation collapsing at (or
departing from) zero energy, at eitherΓ orM,mustmovewith
its energy symmetric p-h partner associated to the same
representation.As a result, themultiplicitiesmΓj

andmMj
can

only change by units of two in such processes. The same
argument extends to nonzero energies where each band with
energy ε and representationΓj (orMj) has ap-h partner with
energy −ε and the same representation. Since k and −k are
identified at Γ andM such that the interval ð−ε1;−k;þε1;kÞ is
symmetric, we finally obtain by continuity with α that the
multiplicity mΓ3

must be odd while mM2
and mΓ2

are both
even integers. It contradicts Eq. (9), thus completing
the proof.
General proof for unequal twist angles.—Our discussion

has so far been restricted to the symmetric configuration of
equal p and q. The C2x and P symmetries are broken when
p and q are different whereas C3z and C2zT are maintained.
However, a remnant of p-h symmetry still exists in the form
of a mirror symmetry Ππ=6 with respect to the plane
orthogonal to the layer and crossing Γ and KM, leaving
each layer invariant. It corresponds to the operator
Ππ=6 ¼ PC2xC3z, with Π2

π=6 ¼ 1, acting as

Ππ=6H̃ðkÞΠ†
π=6 ¼ −H̃ðΠπ=6kÞ; ð10Þ

which associates pairs of mirror-symmetric momenta with
opposite energies. Extending the arguments of Ref. [40],
we show that a set of isolated bands with C2zT symmetry

cannot accommodate an odd winding number Nt, corre-
sponding, e.g., to an odd number of Dirac cones. The
derivation is explicit in Refs. [39,40] for two bands and a
vanishing total Berry phase (Wilson loop) with Nt ¼ −2e2,
where the Euler class e2 is an integer topological invariant.
Adding more bands, windings around singularities can
change sign but keep a definite parity while the parity of e2
defines aZ2 topological invariant, the Stiefel-Whitney class
w2. Then, the relation Nt ¼ −2w2 simply enforces that the
winding number must be an even integer. More intuitively,
we note that Dirac points are monopoles attaching Dirac
strings. They can annihilate in pairs when of opposite signs
or form a topological isolated band by combining pairs of
the same sign [38,39], but in all cases they need to pair to
form an isolated set of bands.
We now show by contradiction that all bands are

connected by gapless points in our trilayer moiré model
for arbitrary p and q. As already discussed above, we can
assume, without loss of generality, a set of disconnected
bands symmetric around zero energy. Particle-hole sym-
metry implies that all band crossings at nonzero energy
come in pairs, such that the analysis of the parity of Nt can
be restricted to zero-energy modes. A single Dirac cone is
protected by C2zT and is pinned at zero energy by p-h
symmmetry. Particle-hole symmetry further protects the
parity of Nt for zero modes as α is varied. By continuity
with the case α ¼ 0, where we have three Dirac cones and
Nt ¼ 3, we finally obtain thatNt is odd, in contradictionwith
Nt ¼ −2w2, which completes our proof that all bands must
be connected.
In summary, we showed that trilayer twisted graphene

exhibits band flattening along symmetry lines and close to
magic angles. We also proved, by compatibility of band
representations for evenly twisted planes or by counting an
odd number of Dirac points protected by C2zT , that the
system is always a metal with an infinite connectivity, an
unprecedented feature in standard materials [45,53–55].
This property relies on p-h symmetry emerging for small
twisting angles. We checked that this condition is practi-
cally realized already for angles close to the first magic
angle [47]. Since it originates from the underlying three
Dirac cones, we conjecture that the property of infinite
band connectivity will appear in many other configurations,
such as multilayer moiré graphene with an odd number of
planes. To further test this conjecture, we computed the
band spectrum [47] for four and five twisted layers with
indeed the result that it is fully connected for five but not for
four layers.
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