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One-dimensional quasiperiodic systems with power-law hopping, 1=ra, differ from both the standard
Aubry-André (AA) model and from power-law systems with uncorrelated disorder. Whereas in the AA
model all single-particle states undergo a transition from ergodic to localized at a critical quasidisorder
strength, short-range power-law hops with a > 1 can result in mobility edges. We find that there is no
localization for long-range hops with a ≤ 1, in contrast to the case of uncorrelated disorder. Systems with
long-range hops rather present ergodic-to-multifractal edges and a phase transition from ergodic to
multifractal (extended but nonergodic) states. Both mobility and ergodic-to-multifractal edges may be
clearly revealed in experiments on expansion dynamics.
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Quasicrystals constitute an intriguing intermediate case
between disordered and periodic systems. In the former
case arbitrarily small disorder results in localization for all
single-particle states (SPS) in both one- and two-dimen-
sional (1D and 2D) systems, whereas in three dimensions a
mobility edge separates extended and localized SPSs [1,2].
The situation is very different in quasiperiodic systems
formed by two incommensurate lattices, which for 1D in
the tight-binding regime (with nearest-neighbor hopping)
are well described by the Aubry-André (AA) model [3–5].
This model has been realized in experiments with ultracold
atoms in bichromatic optical lattices, in which single-
particle localization, Bose glasses, and many-body locali-
zation have been observed [6–9]. Due to the self-duality of
the AA model [5,10,11], above a critical quasidisorder
strength all SPS change from ergodic to localized.
In disordered systems extended states were commonly

believed to be ergodic, except at the mobility edge, where
the states are multifractal, i.e., neither localized nor ergodic
[12–17]. However, recent studies of the artificial Bethe
lattice [18,19], random matrix models [20], and dipolar
excitations in 3D random systems [21] have revealed finite-
width bands of extended nonergodic states next to the
ergodic bands, raising fundamental questions concerning
ergodic-to-nonergodic transitions [22].
Beyond nearest-neighbor hopping breaks the self-duality

of the AA model, and energy-dependent mobility edges
appear [5,23–27]. This is the case in shallow lattices, where
intermediate regimes with both extended and localized SPS
have been predicted [24–27] and recently observed [28], or

in zig-zag lattices with next-to-nearest neighbor hopping
[29]. Self-duality is also lost when the hopping amplitude
decays with the interparticle distance r as 1=ra [26,30].
This is particularly interesting since power-law interactions
occur in many systems. Dipole-dipole interactions (∝ 1=r3)
play a crucial role for magnetic atoms [31], polar molecules
[32], Rydberg atoms [33], nitrogen-vacancy centers [34],
and nuclear spins in solid-state systems [35]. Moreover,
tunable power-law interactions are achievable for laser-
driven ions (0 ≤ a ≤ 3) [36,37] and for atoms in photonic
crystal waveguides [38]. These interactions induce power-
law exchange, e.g., between rotational states in polar
molecules [32] or hyperfine states in trapped ions
[36,37], resulting in power-law hopping of excitations.
In this Letter, we study the SPS of generalized AA

(GAA) models with power-law hops. Short-range hops
(a > 1) are characterized by a hierarchy of regimes with
mobility edges (Fig. 1). Remarkably, for long-range hops,
a ≤ 1, all SPS are extended, in stark contrast to power-law
models with uncorrelated disorder [39–41]. However, there
are finite-width bands of both ergodic and nonergodic
(multifractal) states. We classify these states and show that
there is a phase transition at the ergodic-to-multifractal
edge, characterized by an abrupt change of fractal dimen-
sions. Moreover, we show that the expansion dynamics of
excitations can reveal the presence of mobility and ergodic-
to-multifractal edges.
Generalized AA model.—We consider pinned particles

(with unit filling) at the sites of a deep 1D lattice. The
particles have two internal states f↑;↓g. Interactions result
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in power-law exchange between particles. A second lattice,
incommensurate with the primary one, induces a quasidi-
sordered variation of the energy difference between ↑ and ↓
[47]. The transport of an ↑ excitation in a sample of ↓
particles is described by a GAA model:

Ĥ¼−J
X

i;j≠i

1

ji−jja jiihjjþΔ
X

j

cos½βð2πjþϕÞ�jjihjj; ð1Þ

where jji denotes the state in which the excitation is
localized at the site j, and J=ji − jja is the hopping rate
between the sites i and j. We set J ¼ 1 for simplicity. The
quasidisorder potential is characterized by its strength Δ,
the incommesurabilty β (the ratio of the period of the
primary lattice to the one of the second lattice), and
the displacement ϕ. For a ≫ 1, the GAAmodel approaches
the AA model [42]. For the latter, all SPS are ergodic for
Δ < 2, all localized for Δ > 2, and all multifractal
(extended but nonergodic) at Δ ¼ 2 [5,10,11]. Note that
model (1) breaks the self-duality of the original AA model.
A self-dual generalization of the AAmodel with power-law
hops have been previously discussed [48]. However, that
self-dual model demands power-law interactions between
the sites, which lead to a radically different physics than
that discussed in our paper [49].
Determination of the localization properties.—Away of

discerning between localized, multifractal, and ergodic SPS,
which is especially useful for spectra with edges, is given by
the analysis of the eigenenergies En (indexed in growing
energy order), and in particular by the even-odd (odd-even)
spacings se−on ¼ E2n − E2n−1 (so−en ¼ E2nþ1 − E2n).
Ergodic SPS present a doubly degenerate spectrum

(so−en ≃ 0) [5], and hence a gap between se−on and so−en . In
contrast, for localized SPS both subsets are of the same form,
and the gap vanishes. This is illustrated for the AA model in
Fig. 2(a1-a3). For the multifractal case (Δ ¼ 2) the distri-
bution of both se−on and so−en is strongly scattered [Fig. 2(a2)].
We also characterize the SPS jψni ¼

P
jψnðjÞjji by the

moments IqðnÞ ¼
P

jjψnðjÞj2q ∝ N−Dqðq−1Þ, where Dq are
the fractal dimensions. Localized states are characterized by
Dq ¼ 0, ergodic extended states by Dq ¼ 1, while multi-
fractal states have nontrivial 0 < Dq < 1 [12–17,19,21]. As
shown below, the study of D2 (obtained from the inverse
participation ratio, I2) is particularly useful to characterize
transitions at the mobility and ergodic-to-multifractal edges.
The study of the multifractal spectrum of the SPS and Dq>2

[19] confirms the classification provided by the level spacing
and D2 analyses [42].
Mobility edge.—Figure 1 summarizes our results for

β ¼ ð ffiffiffi
5

p
− 1Þ=2, but similar physics is found for other

values of β. We assume periodic boundary conditions in our
exact-diagonalization calculations, choosing the number of
sites L within the Fibonacci series (up to L ¼ 75025). For
a ≫ 1 we recover the AA model, and hence all SPS are
ergodic (AE regime) for Δ < 2, or localized (AL regime
[50]) for Δ > 2. For finite a > 1 there is a critical value
Δ0ðaÞ at which a mobility edge splits ergodic and localized
SPS [51]. For β ¼ ð ffiffiffi

5
p

− 1Þ=2 we numerically find that
states with energies EβL≤n≤L become localized [Fig. 2(b1)],
whereas those with En<βL remain ergodic. This regime,
which we call P1, exists up to a critical Δ1ðaÞ, at which
states with energies Eβ2L<n<βL also become localized
[Fig. 2(b2)]. The localization transition is observable from
the behavior of D2, which in our calculations springs
from 1 to a value that within our numerical accuracy is
compatible with D2 ¼ 0 [Fig. 2(b3)]. A sequence of Ps
regimes is present for higher Δ values (Fig. 1) [52]. In the
Ps regime the lowest βsL states are ergodic and the rest are
localized. The blocklike nature of the transitions may be
well understood from the analysis of the dispersion of the
subbands [42]. We note that the above mentioned particular
blocks of states that localize or become multifractal for
β ¼ ð ffiffiffi

5
p

− 1Þ=2 result from the form of the corresponding
bands. Although the overall form of the diagram of Fig. 1 is
maintained for other β values, the sizes of the eigenstate
blocks, as well as the specific boundaries, ΔsðaÞ, of the Ps
regimes, depend on the value of β.
Ergodic-to-multifractal edge.—Interestingly, the SPS

properties radically change for long-range hops (a ≤ 1).
The AE regime extends all the way down to a ¼ 0, where it
vanishes. The sequence of Ps regimes is maintained, but
localization is absent, in stark contrast to the case of power-
law hopping in the presence of uncorrelated disorder [41].
In contrast, the spectrum presents an edge between ergodic
and multifractal (extended but nonergodic) SPS. Within the
Ps regime, the lowest βsL states are ergodic, whereas the
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FIG. 1. Regimes of 1D quasicrystals with power-law hopping,
for β ¼ ð ffiffiffi

5
p

− 1Þ=2. For small quasidisorder strength Δ all SPS
are ergodic (AE) and for large Δ (for hopping power a > 1) all
are localized (AL). The Ps regimes are characterized by a fraction
βs of ergodic SPS, whereas the rest are localized (a > 1) or
multifractal (a ≤ 1). The different behavior for a > 1 and a < 1
is indicated in the figure with a slightly different color. The results
were obtained for 987 sites, with periodic boundary conditions.
Calculations for larger systems do not modify the results [42].
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rest are multifractal. This behavior is illustrated for a ¼ 0.5
in Figs. 2(c1) and 2(c2). When crossing the Ps−1 to Ps
boundary, D2 jumps from 1 to 0 < D2 < 1 for the states
with energies EβsL<n<βs−1L [53]. This confirms the ergodic-
to-multifractal character of the transition [Fig. 2(c3)] [42].
Excitation dynamics.—The nature of the SPS results in a

peculiar excitation dynamics. We consider all particles ↓,
except an initially localized ↑ excitation, which for sim-
plicity is placed at the center of a lattice with open boundary
conditions. We define the survival probability, FðRÞ, as the
probability of finding the excitation after a given time in a

site within the region ð−R=2; R=2Þ. As recently shown for
random matrix models [54–57], FðRÞ provides crucial
information about the localization properties. Figure 3
shows FðR ¼ L=2Þ as a function of Δ for a ¼ 3 and a ¼
0.5 for open boundary conditions and L ¼ 987 sites for
long times t (Jt ¼ 104), although similar results are found
for smaller lattices and shorter times. In the AE regime,
FðRÞ vanishes for infinitely large L and long times. For
finite L the probability of finding the excitation at a given
lattice site is the same for all sites and is equal to 1=L. In
contrast, the Ps regimes present localized and extended
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FIG. 2. Results for β ¼ ð ffiffiffi
5

p
− 1Þ=2. Level spacing se−o (red) and so−e (blue) for the AA model (a1-a3), a ¼ 1.5 (b1,b2), and a ¼ 0.5

(c1,c2) for different Δ. In the AA model all SPS are either localized (LOC), multifractal (MF), or ergodic (ERG). In the GAA model, Ps
regimes appear, in which the lowest βs fraction of SPS is ergodic, whereas the rest is localized (a > 1) or multifractal (a < 1). These
graphs were obtained from calculations for L ¼ 28657 sites with periodic boundary conditions. (b3) and (c3) show D2 for the SPS
between β2L and βL at a ¼ 1.5 and 0.5, respectively. For a ¼ 1.5 (0.5) a blocklike localization (ergodic-to-multifractal) transition
occurs when crossing from P1 to P2. The results of panels (b3) and (c3) were obtained from calculations with up to L ¼ 75025 sites with
periodic boundary conditions and then extrapolated to infinite systems. See Ref. [42] for more details about the energy and Δ
dependence of D2.
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FIG. 4. (a) Long-time survival probability FðRÞ for the AA
model with L ¼ 100, for the AE, AL, and MF cases, assuming an
initially localized excitation at x ¼ 0 in L ¼ 100 sites. (b) FðRÞ
for the GAA model with open boundary conditions and L ¼ 987
sites for a ¼ 0.5, 1, and 3, within the P2 regime.
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SPS, and hence the excitation wave packet presents a
bimodal distribution, partially escaping, and partially
remaining localized close to the initial position. As a result
FðRÞ presents a steplike growth when entering the Ps
regimes (see Fig. 3).
The dynamics in the presence of multifractal SPS differs

from that of localized and ergodic ones. This is best
illustrated in the AA model [see Fig. 4(a)]. For sufficiently
large R=L, for long times, FðRÞ ≃ 1 for Δ > 2, FðRÞ ≃
R=L for Δ < 2, and FðRÞ ≃ ðR=LÞ1=2 for Δ ¼ 2. The latter
reflects the nonergodic character of the multifractal
expansion. For the GAA model with β ¼ ð ffiffiffi

5
p

− 1Þ=2, in
the Ps regime the lowest βsL states remain extended. If the
rest of the SPS are localized (a > 1), with a localization
length smaller than R=4L, then FðRÞ approaches F0ðRÞ ¼
ð1 − βsÞ þ βsR=L [a ¼ 3 in Fig. 4(b)]. However, for a ≤ 1
there are ergodic and multifractal SPS, and the latter also
contribute to the escape probability. Hence, for L → ∞ the
function FðRÞ should vanish for all Ps regimes. For finite
systems, FðRÞ remains finite, but FðRÞ < F0ðRÞ and
presents a nonlinear dependence [Fig. 4(b)] [58].
The time dependence of FðRÞ constitutes as well a clear

indicator of the presence of multifractal SPS [54–57].
Figure 5 shows our results for lðtÞ ¼ FðR ¼ 0; tÞ ¼
jhψðtÞjψð0Þij2 [i.e., the Loschmidt echo amplitude, where
ψð0Þ and ψðtÞ are the initial state and its evolved state,
respectively]. For all cases lðtÞ ∼ t−γ . Fitting our numerical
data to this dependence we find that ergodic (localized) SPS
result in γ ≃ 1 (0), whereas our numerics reveals that the
multifractal SPS appearing for a≤1 result in γ≃D2=ð2−aÞ
[42]. The analysis of the excitation dynamics, which can be
monitored using spin-resolved quantum microscopes [59],

can hence reveal not only the structure of intermediate
regimes, but also the multifractal nature of the SPS for
long-range hops.
Outlook.—Quasicrystals with power-law hops, 1=ra,

present nontrivial localization properties. They are
characterized by mobility edges for a > 1, by ergodic-to-
multifractal edges for a ≤ 1, and by the existence of a ladder
of intermediate regimes in which SPS blocks become
localized or multifractal. These properties may be readily
tested using expansion experiments. Mobility edges and
step-wise dynamics may be experimentally probed for polar
molecules pinned in deep bichromatic optical lattices.
Powers 0 ≤ a ≤ 3 may be directly realized in ions
[36,37]. Hence ion experiments are particularly interesting
for the comparative study of mobility versus ergodic-to-
multifractal edges.
Ising-like interactions, which for the case of spin

excitations in polar molecules may be induced by an
external polarizing electric field, are expected to lead to
an intriguing physics including the possibility of a many-
body mobility or ergodic-to-non-ergodic edge, due to the
interaction-induced coupling between ergodic and local-
ized or multifractal SPS [60,61], and the possible locali-
zation instability [62]. The presence of nonergodic SPS
bands opens fascinating possibilities for the realization of a
bad metal phase [63,64] and for the observation of ergodic
to nonergodic phase transition.
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