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We demonstrate that in partially ionized plasmas, Coulomb scattering can be significantly perturbed by
electron collisions with neutral gas particles, and that this effect can be incorporated in the Coulomb
collision terms of the Boltzmann equation by a modification of the classical Coulomb logarithm. We show
that Boltzmann transport calculations using this modified Coulomb logarithm are in excellent agreement,
for a sensitive model problem and a wide range of conditions, with particle simulations describing the
many-body Coulomb interactions from first principles.
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Coulomb scattering is an essential ingredient of charged
particle transport phenomena in various systems such as
gas discharges, fusion plasmas, space plasmas, or semi-
conductors [1,2]. The description of this scattering in terms
of binary Coulomb collisions relies on the fact that it
becomes ineffective at large interaction distances due to
collective (many-body) screening effects. Traditionally this
screening is modeled by applying a cutoff to the Rutherford
scattering cross section [3],

I ¼ bdb=ðd cosΘÞ ¼ ρ2=ð1 − cosΘÞ2; ð1Þ
obtained from the classical relation between the scattering
angle Θ and the impact parameter b:

1 − cosΘ ¼ 2=ð1þ b2=ρ2Þ; ð2Þ
where ρ ¼ jq1q2j=ð4πϵ0μv2Þ is a characteristic length
corresponding to twice the distance of closest approach,
determined by the vacuum permittivity ϵ0 and the charges
q, reduced mass μ, and relative velocity v of the two
interacting particles. The cutoff is applied for the impact
parameter b: it is assumed that interactions with b > bmax,
corresponding to Θ < Θmin, have no effect. This makes it
possible to obtain nondivergent transport cross sections that
account for the effects of Coulomb collisions on a meso-
scopic level, averaged over all impact parameters, such as
the momentum transfer cross section,

σm ¼ 2π

Z
π

Θmin

ð1 − cosΘÞI sinΘdΘ ¼ 4πρ2 lnΛ; ð3Þ

where the cutoff distance appears in the Coulomb
logarithm:

lnΛ ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðbmax=ρÞ2

q
≈ lnðbmax=ρÞ: ð4Þ

This quantity arises as a prefactor in all Coulomb transport
cross sections and in the Coulomb collision terms of the
Boltzmann (Fokker-Planck) equation [4,5]. After some
initial controversy about the value of bmax, it has been
well established since the 1950s [6] that for classical
plasmas bmax is of the order of the Debye length λD ¼
ðϵ0kT=e2neÞ1=2, determined by the electron density ne and
temperature T, and it is appropriate to evaluate lnΛ from
average particle velocities hv2i ¼ 3kT=μ as

lnΛD ¼ lnhbmax=ρi ¼ ln
12πðϵ0kTÞ3=2

e3n1=2e

; ð5Þ

where we assumed singly charged particles (q ¼ �e) and
added the subscript D to refer to the Debye length. This
classical expression holds for ΛD ≫ 1 and kT < 10 eV; at
higher temperatures a quantum-mechanical correction is
needed (due to ρ≲ the de Broglie wavelength). Additional
corrections exist for rapidly varying external fields or
electron cyclotron oscillations faster than the plasma
frequency, as discussed in Ref. [1].
In this Letter, we demonstrate that the above Coulomb

logarithm must be modified when the Coulomb collisions
occur simultaneously with collisions with neutral gas
particles, in particular for electrons in weakly ionized
plasmas in gas discharges. We start by presenting evidence
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from numerical simulations. We consider a basic dc
discharge system, featuring electrons in a background of
xenon gas of particle number density N and subjected to a
constant electric field of strength E in an arrangement
typical of swarm experiments [7], such that boundary
effects are negligible. The electron distribution function
and drift velocity in this system result from a subtle
interplay between electric acceleration and momentum
and energy exchanges in electron-neutral collisions and
electron-electron Coulomb collisions, controlled mainly
by the reduced field E=N and the ionization degree ne=N.
For sufficiently low E=N, the drift velocity in xenon is very
sensitive to ne=N and decreases with increasing E=N, a
trend known as “negative differential conductivity,” due to
electron-electron collisions [8,9]. This constitutes an excel-
lent test case for Coulomb collision theory, which we will
use as our model problem.
The electron distribution function and drift velocity in the

above system are traditionally calculated by solving the
Boltzmann equationwith collision terms for electron-neutral
collisions and electron-electron Coulomb collisions, the
latter involving the Coulomb logarithm. We will now check
suchBoltzmann calculations against results from full particle
simulations describing the Coulomb interactions from first
principles, without invoking binary Coulomb collisions.
Figure 1 shows a comparison of the calculated electron drift
velocity in xenon over a wide range of conditions.
Before discussing these results, we give some more

information about the calculation methods used. The
Boltzmann calculations were performed with the freeware

Boltzmann equation solver BOLSIG+ [10,11] based on the
so-called two-term approximation, assuming that the elec-
tron (phase space) distribution function can be cast in the
following functional form:

f ¼ ne
2πγ3

½F0ðεÞ þ F1ðεÞ cos χ�; ð6Þ

where F0 and F1 are functions of the electron energy ε
only, χ is the electron velocity angle with respect to the
direction of the electric field, and γ ¼ ð2=meÞ1=2 is a
constant with me the electron mass. The function F0

corresponds to the electron energy probability function
(EEPF), generally non-Maxwellian in gas discharge plas-
mas, while F1 represents the anisotropy of the distribution
function due to the electric field, resulting in the electron
drift velocity vd ¼ ðγ=3Þ R∞

0 ϵF1dϵ, where F1 ≪ F0 (see
Fig. 2). In this two-term approximation, the Boltzmann
equation takes the form of two coupled integro-differential
equations for F0 and F1:

−
γeE

3ε1=2
∂F1

∂ε ¼ Cen
0 ½F0� þ Cee

0 ½F0�; ð7Þ

−γeEε1=2
∂F0

∂ε ¼ −Nγε1=2σenmF1 þ Cee
1 ½F0; F1�; ð8Þ

where Cen
0 describes electron energy losses due to different

kinds of elastic and inelastic collisions with neutral gas
particles, σenm is an effective cross section for the total
momentum transfer in these collisions, and Cee

0 and Cee
1

describe the effects of electron-electron Coulomb collisions
on F0 and F1. For a detailed description of these collision

FIG. 1. Electron drift velocity in xenon as a function of reduced
electric field strength E=N (units Td ¼ 10−21 Vm2) for different
ionization degrees ne=N (colors) and different gas pressures (left-
and right-hand panels), calculated by different methods: first-
principles particle simulation (symbols), Boltzmann equation
(BE) with full electron-electron collision terms (solid lines),
and Boltzmann equation with isotropic electron-electron collision
term only (dashed lines).

FIG. 2. Electron energy probability function (top) and
anisotropy jF1=F0j (bottom) in xenon with ne=N ¼ 10−6, for
different E=N, obtained from first-principles particle simulations
(black curves) and from the Boltzmann equation with classical
(green curves) and modified (red curves) Coulomb logarithm.
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terms and their respective effects on the electron distribu-
tion function, we refer to Ref. [11]. The Coulomb collision
terms are proportional to the electron density and the
Coulomb logarithm:

Cee
0;1 ∝ ne lnΛD; ð9Þ

where lnΛD is calculated using kT ¼ ð2=3Þ R∞
0 ε3=2F0dε

and is in the range 5–10. The Cee
1 term plays an important

role in the Spitzer conductivity for fully ionized plasmas
[12] but is generally neglected in the gas discharge
literature, following Ref. [13]; for this reason we also
included in Fig. 1 results obtained without this term. These
Boltzmann calculations were done with high numerical
resolution (400 energy points) and strict convergence
criteria (<10−8 fractional energy balance residue), yet
the computation time was negligible (<1 s per solution).
The numerical code used for the particle simulations was

previously presented in Ref. [14] and used in Ref. [9]; it is
based on a combination of Monte Carlo techniques for
electron-neutral collisions and molecular dynamics tech-
niques to describe the electron-electron Coulomb inter-
actions from first principles, explicitly taking into account
the long-range Coulomb forces between the particles. Very
computation intensive, these simulations serve primarily as
approximation-free benchmarks for Boltzmann calcula-
tions. Because of the extremely small simulation time step
(≈6 × 10−17 s) required for a stable and accurate integra-
tion of electron trajectories at their closest approach, a run
time of about 1 month (on a single CPU) was necessary for
each data point in Fig. 1, using 500 particles. We exten-
sively verified that all results are properly converged and
free from numerical artifacts (apart from the inevitable
statistical noise). The same electron-neutral cross section
data [15,16] were used in all calculations.
The comparison in Fig. 1 shows that the Boltzmann

calculations are in excellent agreement with the particle
simulations when ne=N is either zero (no Coulomb
scattering) or relatively high (≥10−3), provided that the
Cee
1 term is included in the Boltzmann calculations (solid

lines). This is strong evidence that both codes are free from
serious implementation errors and that the approximations
involved in the Boltzmann calculations are valid here.
However, at intermediate ionization degrees, the drift
velocities predicted by the Boltzmann calculations are
systematically higher than those measured in the particle
simulations. Also, the electron energy distribution func-
tions deviate considerably, as is illustrated by Fig. 2 (black
vs green curves) for ne=N ¼ 10−6. These discrepancies
become more important with increasing gas pressure,
which suggests that they are due to shortcomings of the
Coulomb logarithm, because this is the only element in the
Boltzmann calculations that is affected by the gas density,
via ne ¼ Nðne=NÞ, given the same ne=N and E=N.
We will now demonstrate that these discrepancies are

indeed due to the Coulomb logarithm, via the following

mechanism: the electron-neutral collisions are so frequent
that they perturb the electron-electron interactions and
reduce their effects, which translates into a decrease of
lnΛ. To see qualitatively how this works, consider a
Coulomb collision between two electrons with impact
parameter b, causing their relative velocity to be scattered
over an angle Θ. This takes a certain time to happen, which
is longer for larger b. If during that time one of the electrons
is scattered isotropically by colliding with a neutral particle,
this breaks the Coulomb collision up into two parts with
partial scattering angles in different directions, independent
from each other. This reduces the total exchange of
momentum and energy between the two electrons: since
the exchange is proportional to ð1 − cosΘÞ ≈ Θ2=2 for
each independent angle Θ, the total exchange for two
independent half-angles, 2 × ðΘ=2Þ2=2 ¼ Θ2=4, is twice as
small. Extrapolating this argument, we expect that if there
occur m electron-neutral collisions during a Coulomb
collision, then the energy exchange of that Coulomb
collision is reduced by a factor 1=ðmþ 1Þ. And because
m tends to increase as a function of b, Coulomb collisions
with large impact parameters become ineffective.
Let us work this out more precisely. From a straightfor-

ward classical orbit calculation one finds that, during an
unperturbed Coulomb collision, the angle θ of the relative
electron velocity changes in time t according to

t
τ
¼ b tan θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 − b2tan2θ
p þ ρ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ρ2

p ln
ρþ b tan θ
ρ − b tan θ

; ð10Þ

where τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ρ2

p
=v and we took t ¼ 0 and θ ¼ 0 at

closest approach. An approximate solution of Eq. (10) can
be found by neglecting the second term on the right-hand
side:

θðtÞ ≈ arctan
ρt

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ τ2

p . ð11Þ

From this equation we see immediately that, while in total
the velocity is scattered by an angleΘ ¼ θð∞Þ − θð−∞Þ as
in Eq. (2), most of the scattering happens near the point of
closest approach, over a time of the order of a few τ. Hence
we assume that the average number of electron-neutral
collisions that occur during a Coulomb collision can be
written as

m ¼ αντ ¼ αν

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ρ2

q
; ð12Þ

where ν is the electron-neutral collision frequency and α is
a numerical constant of the order of a few times unity. We
also assume that thesem collisions split the angleΘ equally
into mþ 1 uncorrelated angles Θ=ðmþ 1Þ. Note that both
m andΘ depend on the impact parameter b, which jumps to
a different value at each electron-neutral collision, so these
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m electron-neutral collisions do not actually occur one after
another during the same Coulomb collision, but rather
within different Coulomb collisions whose momentary
orbits correspond to the same b. On a mesoscopic level
though, when integrating over all possible impact param-
eters, this does not matter: all that counts is that 1 scattering
event of angle Θ gets effectively replaced by mþ 1
scattering events of angle Θ=ðmþ 1Þ. Applying this
replacement to the momentum transfer cross section
Eq. (3), we find

σeffm ¼ 2π

Z
π

Θmin

ðmþ 1Þ
�
1 − cos

Θ
mþ 1

�
sinΘdΘ

≈ 2π

Z
bmax

0

1 − cosΘ
mþ 1

bdb ¼ 4πρ2 ln
ΛþM
1þM

; ð13Þ

where M ¼ ðαν=vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2max þ ρ2

p
. This momentum transfer

cross section differs from that in Eq. (3) only by the
Coulomb logarithm, which now contains an additional
parameter M due to electron-neutral collisions.
Clearly the assumption that Θ is broken up into equal

parts is a crude approximation; the true breakup is more or
less unequal due to the varying rate of change of θðtÞ and
the random occurrence of the electron-neutral collisions.
A more rigorous version of the above calculation, taking
into account the full evolution of θðtÞ from Eq. (10) and the
randomness of the electron-neutral collisions, is repre-
sented by the following integral:

σeffm ¼ 2π

Z
bmax

0

bdb
Z

∞

−∞
2νdt1

Z
∞

t1

dt2

× 2νe−2νðt2−t1Þ½1 − cosðθ2 − θ1Þ�: ð14Þ
Here the subscripts 1 and 2 refer to two consecutive
electron-neutral collisions, marking the beginning and
ending of an independent portion of a Coulomb collision,
2νdt1 is the probability that such a portion starts between t1
and t1 þ dt1 (because one of the two electrons collides with
a neutral), and 2νe−2νðt2−t1Þdt2 is the probability that it then
ends between t2 and t2 þ dt2. This integral cannot be
calculated analytically but is readily evaluated numerically,
changing the integration variables t → θ to enable sub-
stitution of Eq. (10). Moreover, in the limit of many
electron-neutral collisions, νρ ≫ v, Eq. (14) yields

σeffm ≈ 4πρ2
v
3νρ

: ð15Þ

This can be used to calibrate the constant α in the parameter
M of the approximate expression [Eq. (13)]: in order to
reproduce the limit Eq. (15), one must set α ¼ 3. Figure 3
shows a comparison between the effective Coulomb
logarithm lnΛeff ¼ σeffm =ð4πρ2Þ calculated numerically
from Eq. (14) and the approximate Eq. (13) with α ¼ 3,
over a large range of conditions. It turns out that the

agreement is remarkably good, better than 1%, except at
very low values of Λ when the binary collision theory is no
longer valid anyway. We therefore conclude that it is safe to
use Eq. (13) for all conditions of interest.
Finally, averaging over the electron energy distribution

and substituting bmax ¼ λD, we obtain the following
convenient expression for the effective Coulomb logarithm
in the presence of electron-neutral scattering:

lnΛeff ¼ ln
ΛD þM
1þM

; M ≈
ffiffiffi
6

p

2

hνi
ωp

; ð16Þ

where M is evaluated from the ratio of the mean electron-
neutral collision frequency hνi to the plasma frequency

FIG. 3. Comparison between the effective Coulomb logarithm
σeffm =ð4πρ2Þ from Eq. (14) and from the approximate Eq. (13)
with α ¼ 3.

FIG. 4. Same as Fig. 1 but using the modified Coulomb
logarithm of Eq. (16) in the Boltzmann calculations (solid lines),
with full electron-electron collision terms.
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ωp ¼ ðe2ne=ϵ0meÞ1=2, corresponding qualitatively also to
the ratio of λD to the electron-neutral mean free path.
We implemented this effective Coulomb logarithm into

the Boltzmann calculations of Fig. 1, with hνi ¼ γN
R
∞
0

εσenmF0dε, and found that all results are now in excellent
agreement with those from the first-principles particle
simulations, to within statistical uncertainties over the full
range of conditions, which confirms the validity of
Eq. (16). This holds not only for the electron drift velocity,
shown in Fig. 4, but for the entire electron distribution
function, illustrated by Fig. 2 (black and red curves). For
completeness, we note that electron transport in quasineu-
tral plasmas at high ne=N (≳10−5) can be significantly
affected by electron-ion momentum transfer [11], which
was not included in these calculations, but is unrelated to
the behavior of the Coulomb logarithm of interest here.
In summary, we introduced a modification to the classical

Coulomb logarithm that takes into account the effect of
electron-neutral collisions during Coulomb scattering
events. The correctness of this modification was tested
and confirmed for a sensitive electron transport problem,
for which inconsistencies between the results from the
Boltzmann equation and from first-principles particle sim-
ulations were shown to be resolved. In view of the general
nature of the underlying physical mechanism, we expect this
modification to hold in general for partially ionized classical
plasmas and to be significant whenever the electron-neutral
collision frequency exceeds the plasma frequency. Future
work will have to explore the consequences of this modi-
fication for different plasma problems and scenarios.
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