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A walker is a droplet of liquid that self-propels on the free surface of an oscillating bath of the same
liquid through feedback between the droplet and its wave field. We have studied walking droplets in the
presence of two driving frequencies and have observed a new class of walking droplets, which we coin
superwalkers. Superwalkers may be more than double the size of the largest walkers, may travel at more
than triple the speed of the fastest ones, and enable a plethora of novel multidroplet behaviors.
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A liquid bath oscillating vertically may sustain bouncing
droplets on its free surface [1,2]. For sufficiently large
accelerations of the bath, these bouncing droplets may
begin to walk [3]. Such walkers emerge just below the
Faraday instability threshold, above which the liquid-air
interface of the bath becomes unstable and standing
subharmonic Faraday waves emerge [4]. In the walking
state, the droplet is propelled by local Faraday waves that it
excites on each bounce and whose decay time is a function
of the proximity to the Faraday threshold, also referred to
as the memory of the system. At high memory, waves
generated by the droplet in the past continue to affect the
motion of the droplet. Interactions of a walker with barriers
and other droplets are mediated by this wave field, resulting
in rich dynamics and a variety of multidroplet configura-
tions [5–15]. This hydrodynamic system comprising a
wave and a droplet mimics several features of the quantum
realm including orbital quantization in rotating frames [16]
and harmonic potentials [17,18], wavelike statistical behav-
ior in confined geometries [19,20], tunneling across sub-
merged barriers [21], and has been predicted to show
anomalous two-droplet correlations [14]. A detailed review
is provided by Bush [22].
Walkers are typically driven by a pure sine wave

a1ðtÞ ¼ γ sinð2πftÞ, where γ is the amplitude of the driving
acceleration, f is the driving frequency, and t is time. For a
commonly studied system of silicone oil with 20 cSt
viscosity and f ¼ 80 Hz, droplet radii of 0.3 mm to
0.5 mm and walking speeds of up to 15 mm=s have been
observed [23,24]. Here we present a new class of walking
droplets, which we coin superwalkers, that emerge when
the fluid bath is driven simultaneously at a frequency f and
the subharmonic frequency f=2 with a phase difference Δϕ
according to the acceleration

a2ðtÞ ¼ γf sinð2πftÞ þ γf=2 sinðπftþ ΔϕÞ: ð1Þ

In the commonly studied system noted above, superwalkers
can be significantly larger than walkers with radii up to
1.4 mm and they can walk at up to 50 mm=s. The largest
superwalkers undergo significant internal deformation
and barely lift off from the surface of the bath. We call
these jumbo superwalkers. The key differences between a
walker and the two kinds of superwalkers are summarized
in the schematic of Fig. 1. Fundamental differences
between walkers and superwalkers are also evident in their
interdroplet interactions. Because of their large inertia,

FIG. 1. Comparison of a walker (top), a normal superwalker
(middle), and a jumbo superwalker (bottom). Superwalkers
emerge when the bath is driven at two frequencies f and f=2
with a phase difference Δϕ. They may be significantly larger than
walkers and may move significantly faster. Left panels show top
views of typical droplets and their wave fields, and side views of
the same droplets. Right panels show the bath motion (solid
curve) and the typical bouncing motion of the droplets, see text
for notation.
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superwalkers may easily overcome the wave barrier that
typically prevents contact interactions between walking
droplets, enabling superwalkers to form a variety of novel
stationary and dynamic bound states.
Our experiments were performed using a circular bath of

diameter 18 cm filled to a height of approximately 8 mm
with silicone oil of viscosity 20 cSt. The bath was mounted
on the cone of a subwoofer speaker [25], which was placed
on an optical breadboard. The quality of uniaxial vibrations
and leveling of the bath were investigated using acceler-
ometers and by observing uniform generation of Faraday
waves [26,27]. Unless otherwise stated, the speaker cone
was driven simultaneously at f ¼ 80 Hz and f=2 ¼ 40 Hz,
with each driving signal fed into a separate voice coil.
The acceleration of the bath was measured using two
accelerometers mounted on the edges of the bath. For each
accelerometer, the γ40 and γ80 acceleration amplitudes and
phase shift Δϕ were extracted through a nonlinear least
squares fitting of the accelerometer signal to Eq. (1). The
measured phase differenceΔϕ differed from the input value
by a constant and has an uncertainty of �3°. The measured
values of γf and γf=2 have an uncertainty of�0.05 g. Small
droplets with radius less than 0.8 mm were created by
swiftly extracting a needle from the oil bath while larger
droplets were created using a syringe. The droplets were
imaged with a top-view camera at 4 frames per second and
with a side-view high-speed camera for a selection of cases
at a typical frame rate of 4000 frames per second. A light
panel placed above the camera provided sufficient illumi-
nation for the top-view images while a bright LED source
illuminated the droplets from the side for the high-speed
videos. The size of each droplet was measured from the
top-view images using a Hough circle transform. Further
details are provided in the Supplemental Material [27].
Characteristics of solitary superwalkers are shown in

Figs. 2 and 3. Figure 2(a) shows the speed of a droplet as a
function of its radius for fixed values of γ80 and Δϕ and
three values of γ40, illustrating the significant size and
speed increase possible for superwalkers. Three prominent
types of walking are observed for two-frequency driving
and are identified in Fig. 2(a). The smallest droplets, which
are walkers for single-frequency driving, become chaotic
superwalkers upon adding the subharmonic driving signal.
These droplets bounce aperiodically, see Fig. 2(b), and
walk unsteadily with significant fluctuations in their
velocities. Similar irregular walking dynamics for two-
frequency forcing at 80 Hz and 64 Hz has been observed
previously [30].
Much larger droplets that would not be able to walk for

single-frequency driving can walk with two frequencies f
and f=2. They have constant velocity and typically have
greater speeds than the fastest walkers. Two different
bouncing modes are realized for such superwalkers. We
describe the vertical bouncing behavior of droplets driven
by two frequencies using the generic notation (l,m,n)

indicating that the droplet impacts the surface n times
during m oscillation periods of the bath at frequency f,
which equals l oscillation periods of the bath at frequency
f=2. For single frequency driving, the l index is dropped.
Superwalkers in the (1,2,1) mode impact the bath once
every two up-and-down motions of the bath as shown in
Fig. 2(c) and their speed increases almost linearly with
increasing size of the droplet. Surprisingly, despite the
presence of γ40 being essential to the existence of super-
walkers, its magnitude only marginally affects the speed of
(1,2,1) superwalkers. This is consistent with the observa-
tions for (2,1) walkers, for which the walking speed is only
weakly dependent on the driving amplitude at higher
accelerations above the walking threshold [23].
Very large superwalkers bounce in a (1,2,2) mode, see

Fig. 2(d). In contrast to the (1,2,1) superwalkers, the speed
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FIG. 2. Characteristics of a solitary superwalker. (a) Walking
speed as a function of droplet radius for fixed values γ80 ¼ 3.8 g
and Δϕ ¼ 130° and three different values of γ40, specifically
γ40 ¼ 0 g (blue markers), γ40 ¼ 0.6 g (black markers), and γ40 ¼
1.0 g (red markers). Details of the error bars and the theory
prediction (solid curve) are explained in the Supplemental
Material [27]. Three different bouncing behaviors are indicated
for superwalkers: chaotic, (1,2,1), and (1,2,2). Vertical slice-time
plots of droplets are shown for (b) chaotic, (c) (1,2,1), and
(d) (1,2,2) bouncing modes for γ40 ¼ 0.6 g and radii as indicated.
These spatiotemporal images are generated by juxtaposing
vertical sections one pixel wide passing through the droplet’s
center of mass. Panels (e) and (f) show the two extremes of the
shape deformations of a jumbo superwalker.
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of (1,2,2) superwalkers decreases with increasing droplet
size. We attribute this behavior to the increased drag due to
the prolonged contact time between the droplet and the
bath. Superwalkers with radius R≳ 0.9 mm undergo sig-
nificant internal deformation and do not seem to lift off
from the surface. We refer to these as jumbo superwalkers,
see Figs. 2(e) and 2(f) and Supplemental Video S1 [27].
The frequency of the elliptical shape vibrations of the
jumbo superwalkers is close to their bouncing frequency
[27,28,31]. Intriguingly, jumbo superwalkers cannot sim-
ply bounce without walking.
The solid curve in Fig. 2(a) is the speed-size relationship

for hypothetical (2,1) walkers with single-frequency driv-
ing predicted from the Oza-Rosales-Bush stroboscopic
model [27,32]. The prediction is reasonably accurate,
potentially because the bouncing mode and wave field
of (1,2,1) superwalkers are similar to (2,1) walkers. Since
the stroboscopic model is only valid for walkers bouncing
in a (2,1) mode, we do not expect it to be applicable for
modeling the (1,2,2) superwalkers. However, recently more
detailed numerical simulations [33] have also reproduced
(1,2,1) superwalking behavior, and these may be able to
describe (1,2,2) normal superwalker behavior as well.
Modeling of jumbo superwalkers will presumably require
consideration of shape deformations.
The value of the phase difference Δϕ between the two

driving signals crucially affects the behavior of droplets.
Figure 3(a) shows representative data for the speed of a
superwalker as a function ofΔϕ for fixed droplet radius and
acceleration amplitudes. We find that superwalkers only
exist for a limited range of phase difference and outside this
range they either coalesce (open markers) or bounce. For
the parameters corresponding to Fig. 3(a), the droplets
bounce in a (1,2,2) mode both in the bouncing and the
superwalking regime. The maximum speed occurs in the
vicinity of Δϕ ≈ 140°, a value that does not appear to vary
significantly with γ80, γ40, or droplet size.
Figures 3(b)–3(d) show the different regimes observed in

the ðγ80; γ40Þ parameter space for a fixed phase difference

Δϕ ¼ 130° and three different droplet radii. Parametrically
forcing a bath of liquid simultaneously at two different
frequencies f and f=2 may result in a Faraday instability
with either f=2 or f=4 waves depending on the amplitudes
of the two frequencies and the phase difference Δϕ
between them [34]. We find that driving the bath at
80 Hz and 40 Hz delays the onset of 20 Hz Faraday waves
when the driving acceleration γ80 is large. The onset of the
40 Hz Faraday waves is not significantly affected. For large
γ40 and γ80, both 40 Hz and 20 Hz Faraday waves appear to
be excited simultaneously. Below the Faraday threshold,
we find coalescing (C), bouncing (B), and superwalking
(SW) regions with the extent of each region dependent on
droplet size. For a relatively small droplet, Fig. 3(b), the
extent of the bouncing and superwalking regions is large.
The bouncing region progressively decreases with an
increase in droplet size, see Figs. 3(b)–3(d). For a larger
droplet, Fig. 3(d), the bouncing region disappears and the
droplet may either coalesce or walk. For even larger
droplets, the superwalking region also vanishes. We also
find that just above the 80 Hz-driving Faraday threshold,
unlike walkers, superwalkers still walk steadily with their
motion guided by the globally excited nonlinear Faraday
waves. In the parameter regime where global Faraday
waves are not excited, droplets always appear to trigger
decaying 40 Hz Faraday waves, as illustrated by the
similarity in wavelengths in Fig. 1.
Superwalkers open up an extended parameter space to

explore new phenomenawith walking droplets, a selection of
which are illustrated in Fig. 4. Multiple superwalkers inter-
acting with each other through their wave field form a variety
of stationary and dynamic configurations. Two superwalkers
can bind into a tight pair in which the droplets are separated
only by a very thin air layer, see Fig. 4(a) and Supplemental
Video S2 [27]. If such a pair of droplets have differing size
they traverse a circular path, while a pair of identical droplets
traverses a straight path. Similar states exist for staggered
three-droplet and four-droplet configurations, see Figs. 4(f)
and 4(g) and Supplemental Videos S3 and S4 [27].

Coalescing

(a) (b) (c)

Bouncing Superwalking Faraday waves 20 Hz Faraday waves 40 Hz Mixed Faraday waves

(d)

C B SW F40 F80 MF

C
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FIG. 3. (a) Droplet speed as a function of phase difference Δϕ for a droplet of radius R ¼ 0.83� 0.03 mm for γ80 ¼ 3.8 g and
γ40 ¼ 0.6 g. The data to the right of the vertical dotted line are repeated. Different behaviors occurring in the ðγ80; γ40Þ=g parameter
space for a fixed phase difference Δϕ ¼ 130° and three different droplet radii: (b) R ¼ 0.6� 0.05 mm, (c) R ¼ 0.8� 0.05 mm, and
(d) R ¼ 1.0� 0.05 mm. Error bars are explained in the Supplemental Material [27].
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We have observed another type of bound pair called
chasers, see Figs. 4(b) and 4(c) and Supplemental
Videos S5 and S6 [27], which have previously been found
numerically for identical droplets with single-frequency
driving [14,35] and experimentally in an effectively one-
dimensional annular geometry [36]. In this state, twodroplets
walk one behind the other at a constant speed. For droplets of
differing size, the larger droplet leads and drags the smaller
one in its wake. Chasing pairs of superwalkers are robust and
ubiquitous at high memory and the larger the size disparity
between the two droplets, the more stably bound they are.
Particularly disparate pairs can survive collisions with other
droplets and even with the bath’s walls. Less commonly, we
have observed droplet trains consisting of three chasing
droplets in descending size order. We note that chasing pairs
are different from ratcheting pairs of walkers [13,37].
Ratcheting motion typically occurs below the walking
threshold and the pair travels slowly, while we find that
chasers only appear at high memory and are an order of
magnitude faster.
Two superwalkers can form a state reminiscent of prom-

enading pairs of walkers, where the droplets walk in parallel
with sideways oscillations [7,8,15]. Promenading pairs of
walkers remain physically separated at all times due to the
wave barrier formed as they approach one another. In
contrast, promenading pairs of superwalkers undergo drop-
let-droplet collisions, bouncing off one another, see Fig. 4(e)
and Supplemental Video S7 [27]. The center of mass of
identical promenading superwalkers follows a straight path
while that of even slightlymismatched superwalkers tends to
follow a circular trajectory.
Two superwalkers may also form loosely bound orbiting

pairs similar to walkers (see Refs. [6,9,10] for descriptions

of ordinary walkers in this configuration). A novel feature
for superwalkers is that a size mismatch results in inter-
mittent reversals of the orbiting direction. We also observe
tightly bound orbiting pairs of mismatched superwalkers.
With an extreme size imbalance, giant droplets that
coalesce with the bath in isolation can persist if accom-
panied by a smaller orbiting satellite droplet, see Fig. 4(d)
and Supplemental Video S8 [27].
When many superwalkers are present, the interdroplet

interactions favor crystalline droplet configurations for
relatively low driving accelerations. If the value of γ40
is progressively increased while keeping γ80 fixed, see
Figs. 4(h)–4(k), the crystal initially begins to jiggle. Similar
jiggling of a droplet crystal has been observed for single
frequency driving on decreasing the frequency or increas-
ing the number of droplets [11]. Increasing γ40 further
results in disintegration of the droplet crystal but droplets
may still remain bound in two and three droplet configura-
tions. Ultimately, at the highest γ40, the droplets begin to
superwalk at high speed, bouncing off each other elastically
like billiard balls. The observed dynamics are reminiscent of
solid-liquid-gas phase transitions with the forcing amplitude
acting as a temperature parameter, see Supplemental Video
S9 [27]. This behavior is robustwith respect to interchanging
the roles of γ40 and γ80, and are associated with crossing
the phase boundary between bouncing (B) and superwalk-
ing (SW).
Another interesting dynamical phenomenon may be

observed when the forcing frequencies are slightly detuned,
for example with 80 Hz and 39.5 Hz driving, see
Supplemental Video S10 [27]. Here the droplets perform
a stop-and-go motion in which the droplets walk for a
while, then stop abruptly, then walk again, and so on. Such
motion arises because the slight detuning of the two
frequencies causes the phase difference Δϕ to evolve very
slowly in time and so the droplet periodically cycles
through the superwalking and bouncing regimes. Even if
a coalescence regime is encountered, coalescence may be
avoided if such a regime is traversed quickly enough. The
result is an effective discrete-time dynamical system that
emerges out of an underlying continuous-time system.
In conclusion, we have introduced a new class of

walking droplets, coined superwalkers, enabled by adding
a subharmonic driving signal to a periodically driven
walking-droplet system. This introductory study of super-
walkers paves the way for a wealth of new phenomena and
warrants further investigation.
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FIG. 4. A plethora of phenomena observed with superwalkers;
see text for details.
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