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Soft mechanical metamaterials can support a rich set of dynamic responses, which, to date, have received
relatively little attention. Here, we report experimental, numerical, and analytical results describing the
behavior of an anisotropic two-dimensional flexible mechanical metamaterial when subjected to impact
loading. We not only observe the propagation of elastic vector solitons with three components—two
translational and one rotational—that are coupled together, but also very rich direction-dependent
behaviors such as the formation of sound bullets and the separation of pulses into different solitary modes.
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Ongoing advances in digital manufacturing technologies
are enabling fabrication of systems with an unprecedented
level of compositional and structural complexity [1–3].
This remarkable control of geometry has stimulated major
advances in the design of mechanical metamaterials—
designer matter with unique mechanical properties that
are dictated by their engineered structure [4,5]. While initial
efforts in the field have focused on systems with unusual
linear properties, such as negative Poisson’s ratio [6–8],
negative stiffness [9,10], and negative thermal expansion
[11,12], large deformation and nonlinearities have been
recently embraced as a means toward new functionalities,
including programmability [13], energy absorption [14],
and shape transformation [15]. Moreover, it has been
shown that highly deformable mechanical metamaterials
can be designed to support the propagation of a variety
of nonlinear waves with large displacement amplitudes
[16–19], providing a convenient platform to study non-
linear wave physics. However, to date the investigation of
the nonlinear dynamic response of flexible metamaterials
has been limited to one-dimensional (1D) systems.
Here, we investigate the nonlinear dynamic response

of a 2D flexible mechanical metamaterial comprising a
periodic arrangement of squares connected at their vertices
by thin ligaments [18,20,21]. Remarkably, our experiments
and analyses reveal that several new physical phenomena
emergewhen subjecting the structure to low-energy impacts.
First, our system supports the propagation of elastic vector
solitons with three polarization components—two transla-
tional and one rotational. Second,we investigate the effect of
the anisotropy of the medium on the 2D nature of the soliton
and find that such anisotropy plays a crucial role, leading to
rich new nonlinear effects. For example, for propagation at
45° from the symmetry axis, a distinct focusing effect is

observed. The pulse does not spread along either direction,
suggesting that sound bullets may exist in our system.
Moreover, we find that for most other propagation angles
the wave separates into two distinct solitary modes, each
following a principal direction of symmetry. While 2D
nonlinear elastic waves have been previously studied in
granularmedia [22–25], themonolithicity and printability of
our system allow facile control of the architecture, and hence
control of the system’s nonlinear dynamic response, provid-
ing a powerful platform to explore, visualize, and engineer
new wave phenomena.
We start by studying experimentally the response of a 2D

circular sample with 30 squares along its diameter when
excited with an impactor [see Fig. 1(a)]. Our sample is
fabricated out of polydimethylsiloxane using direct ink
writing, an extrusion-based 3D printing approach [26].
Steel spheres with a diameter of 4.35 mm are embedded in
the middle of the squares to modify their inertial properties.
All squares are rotated by offset angles of θ0 ¼ 25°, have
center-to-center-distance of a ¼ 9.27 mm, and are con-
nected to one another by ligaments approximately 5 mm in
width [see Fig. 1(b)]. In our experiments, we impact the
sample at different points along its circumference to initiate
pulses that propagate along different directions defined as

êk ¼ cosϕêx þ sinϕêy; ð1Þ

where êx and êy denote the two directions of periodicity of
the system, and impact angle ϕ is the angle between the
normal to the impactor and êx [see Fig. 1(a)]. Finally, we
record the impact event with a high speed camera, allowing
measure of local vectorial displacement and velocity via
digital image correlation [27,28] (see the Supplemental
Material [29] for additional information).
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In Figs. 1(c)–1(f), we report contour plots of the velocity
along êk, vk, at t ¼ 5.5 ms after impact for ϕ ¼ 0°, 15°,
30°, and 45°. Moreover, for each impact angle we also show
the spatial-temporal evolution of vk along the propagation
direction (focusing on the region delimited by the yellow
dashed lines in the snapshots), allowing extraction of pulse
speed (details in the Supplemental Material [29]). Three
key features emerge from these plots. First, for impact
angle ϕ ¼ 0° the pulse propagates in a solitary fashion (i.e.,
it maintains both its shape and velocity), as the velocity
profile is characterized by a single peak with nearly
constant width. Second, for ϕ ¼ 15° and 30° the excitation

splits into two separate pulses. This is apparent both from the
asymmetric velocity profile and from the two peaks seen in
the spatial-temporal evolution of vk, each with constant
velocity and pulsewidth. Third, forϕ ¼ 45° we again have a
single pulse propagating through the sample, but this time
the wave front keeps its shape in both the ek and e⊥
directions. As a matter of fact, the pulse transversal width
is the same as the impactor width (see the Supplemental
Material [29] for more details). This suggests that for
ϕ ¼ 45° the wave has a transversal self-focusing effect,
balancing the linear beam diffraction and stabilizing the
pulse lateral width. This potentially leads to the generation
of compact sound bullets of very large amplitudes, which
may dramatically impact a variety of applications, such as
biomedical devices, nondestructive evaluation, and defense
systems [30–32].
To better understand our experimental results, we

numerically model the system as an array of rigid squares
connected at their vertices via a combination of linear axial
(with stiffness ks ¼ 8180 N=m and kl ¼ 16360 N=m) and
rotational springs (with stiffness kθ ¼ 0.0312 Nm=rad)
[18,33,34]. Moreover, we assign to the ½i; j�th square three
degrees of freedom (DoF): the displacement in the êx
direction, u½i;j�x , the displacement in the êy direction, u½i;j�y ,
and the rotation around the z axis, θ½i;j�. Using these
definitions, the equations of motion for the ½i; j�th square
are given by

mü½i;j�γ ¼
X4
p¼1

Fγ½i;j�
p ; Jθ̈½i;j� ¼

X4
p¼1

M½i;j�
p ; ð2Þ

where γ ¼ x, y, and m ¼ 0.797 g and J ¼ 5.457 gmm2

are, respectively, the mass and moment of inertia of the

rigid units. Moreover, Fx½i;j�
p and Fy½i;j�

p are the forces along
the êx and êy directions generated at the pth vertex of

the ½i; j�th unit by the springs, and M½i;j�
p represents the

corresponding moment (see the Supplemental Material [29]
for their explicit expressions).
By numerically solving Eq. (2) via the fourth order

Runge-Kutta method, we find that the physical phenomena
observed in our tests (i.e., solitonlike pulses, mode sepa-
ration for ϕ ¼ 15° and 30°, and self-focusing for ϕ ¼ 45°)
not only persist, but actually become more accentuated
when considering a larger model with 60 squares along the
diameter (see Fig. 2 and the Supplemental Material [29]).
Furthermore, in our numerical analysis we also excite
planar waves on square-shaped samples and again observe
solitonlike pulses and separation of modes (see Fig. S11 of
the Supplemental Material [29]). As such, our numerical
results indicate that the phenomena observed in the experi-
ments are not artifacts introduced by either edge effects,
damping or excitation, but rather emerge because of the
bulk properties of the medium.
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FIG. 1. (a) Schematic of the system. (b) Definition of velocity
of squares. (c)–(f) Contour plots of parallel velocity vk and t-d
contour plots of velocity along indicated direction for impact
angles of ϕ ¼ 0°, 15°, 30°, and 45°. The magenta squares are
those to which the displacement is applied. The full time
evolution is available in Movie S1 of the Supplemental
Material [29].
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Since our numerical results reveal that the phenomena
observed in our experiments are a robust feature of the
system, we next explore deeper insights into the nonlinear
dynamic properties of our system by simplifying Eq. (2) to
derive analytical solutions for the case of planar waves. To
this end, we assume that the wavelength of the propagating
waves is much wider than the cell size a and that θ½i;j� ≪ 1.
We then take the continuum limit of Eq. (2) and retain
nonlinear terms up to the third order to obtain the
continuum governing equations

müx ¼ a2
�
kl∂xxux þ ks∂yyux þ

tan θ0a2kl
6

∂xxxθ

þ klðtan θ0 þ θ − tan θ0θ2=2Þ∂xθ

�
; ð3aÞ

müy ¼ a2
�
ks∂xxuy þ kl∂yyuy þ

tan θ0a2kl
6

∂yyyθ

þ klðtan θ0 þ θ − tan θ0θ2=2Þ∂yθ

�
; ð3bÞ

Jθ̈ ¼ a2ðks − kltan2θ0 − 4kθÞ∇2θ=4

− 2a2ðkltan2θ0 þ 4kθÞθ − 3a2kl tan θ0θ2

− a2klðtan θ0 þ θ − tan θ0θ2=2Þð∂xux þ ∂xuyÞ
− a2klð13 − 15tan2θ0Þθ3=12; ð3cÞ

where ∂γf ¼ ∂f=∂γ,∇2 ¼ ∂xx þ ∂yy, and ux, uy, and θ are
three continuous functions which interpolate the discrete
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FIG. 2. Numerical results for a circular model with 60 squares along its diameter. (a) Contour plots of vk at t ¼ 12 ms for all four
impact angles. (b) Spatial-temporal map of vk for all considered impact angles. The magenta squares in (a) are those to which the
displacement is applied. The full time evolution is available in Movie S2 of the Supplemental Material [29].
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FIG. 3. (a) Schematic highlighting the input signal Ain and the
translational amplitude of the excited soliton A. (b) Translational
amplitude A of the solitons excited by impacts of amplitude
Ain ¼ 7 mm for ϕ ∈ ½0; 45°�. The triangular and circular markers
correspond to the velocities extracted from our experimental and
numerical results. (c)–(f) Translational amplitude and associated
deformation for all solitary modes. Note that the displacements
and rotations are five times amplified, excited by input signals
with Ain ¼ 7 mm and (c) ϕ ¼ 0°, (d) ϕ ¼ 45°, (e) ϕ ¼ 15°, and
(f) ϕ ¼ 30°.

PHYSICAL REVIEW LETTERS 123, 024101 (2019)

024101-3



variables u½i;j�x , u½i;j�y , and θ½i;j�, respectively (see the
Supplemental Material [29] for details).
To solve Eq. (3), we focus on planar waves propagating

along the êk direction and introduce the traveling coor-
dinate ζ ¼ x cosϕþ y sinϕ − ct, with c being the pulse
velocity. Introduction of ζ into Eq. (3), integration of
Eqs. (3a) and (3b) with respect to ζ and their subsequent
substitution into Eq. (3c), yields

dζζθ ¼ C1θ þ C2θ
2 þ C3θ

3; ð4Þ
with

C1 ¼ −4F½ðEx
1 þ Ey

1 − 2Þsin2θ0 − 2Kθ�;
C2 ¼ −3F sin 2θ0ðEx

1 þ Ey
1 − 2Þ;

C3 ¼ −Fð7 cos 2θ0 − 1ÞðEx
1 þ Ey

1 − 2Þ=3; ð5Þ
and

Ex
γ ¼

cos2αϕ

cos2ϕþ ks
kl
sin2ϕ − mc2

kla2
;

Ey
γ ¼ sin2αϕ

ks
kl
cos2ϕþ sin2ϕ − mc2

kla2
;

F ¼ 3klsec2θ0=2

a2½3ks
2
þ kltan2θ0ðEx

2 þ Ey
2 − 3

2
Þ� − 6ðkθ − klc2J

ma2 Þ
; ð6Þ

where γ ¼ 1, 2. Equation (4) can be directly derived from
the Klein-Gordon equation with quadratic and cubic non-
linearities [35,36], by substitution of the traveling wave
coordinate ζ. It admits well-known solitary wave solutions
of the form

θ ¼ 1

D1 �D2 cosh ðζ=WÞ ; ð7Þ

where

D1 ¼ −
C2

3C1

; D2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
2

9C2
1

−
C3

2C1

s
; and W ¼ 1ffiffiffiffiffiffi

C1

p :

ð8Þ
Finally, the solution for the translational components ux
and uy can be obtained by integrating Eqs. (3a) and (3b)
with respect to ζ (see the Supplemental Material [29] for
details).
Having obtained an analytical solitary wave solution, we

now use it to validate our experimental and numerical
observations. To begin with, we note that the analytical
solution confirms that the pulses propagating in our 2D
mechanical metamaterial are solitons. Specifically, it
reveals that they are elastic vector solitons with three
components—two translational and one rotational—that
are coupled together and copropagate without dispersion.
Note that although the springs used here are all linear, the

nonlinearity still emerges from the “þ1” rotational DoF
through its nonlinear geometrical coupling between the two
translational DoF. Next, we use our continuum model to
understand whether for specific loading directions ϕ the
system supports solitary waves with different modes. To
this end, we start by noting that in our experiments the
impactor imposes a displacement with amplitude

Ain ¼ Ainêk ¼ Ain cosϕêx þ Ain sinϕêy; ð9Þ

to the squares that it contacts. This input signal excites a
vector soliton with translational amplitude

A ¼ Axêx þ Ayêy; ð10Þ

where Ax and Ay are the amplitudes of its translational
components, which are functions of both the propagation
velocity c and the propagation angle ϕ [i.e., Axðc;ϕÞ and
Ayðc;ϕÞ� (see the Supplemental Material [29] for details).
Since the translational amplitude should be a projection of
the input signal along the direction of A [see Fig. 3(a)], it
follows that

jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
x þ A2

y

q
¼ Ain ·

A
jAj ; ð11Þ

which provides a relation between the input signal applied
by the impactor (i.e., the amplitude Ain and the angle ϕ) and
the propagating velocity c of the excited solitary wave.
Therefore, given a pair of input parameters ϕ and Ain,
Eq. (11) can be used to solve for c and, once c is known, the
form of the solitary pulse excited by the impact via Eqs. (7),
(3a), and (3b).
In Fig. 3(b), we show the evolution as a function of the

angle ϕ of A and c for solitons excited by impacts of
amplitude Ain ¼ 7 mm (the input displacement applied in
our experiments). Interestingly, we find that for most impact
directions two different solitary modes are excited by Ain,
each characterized by a distinct velocity c and translational
amplitudeA. Only for impact directions of ϕ ∼ 0° and ∼45°
is a single wavemode excited. Importantly, we also find that
the velocities predicted by our continuum model nicely
agree with those extracted from both our experimental
(triangular markers) and numerical (circular markers)
results. Finally, to get a better understanding of the different
solitary modes excited by the input signal, in Figs. 3(c)–3(f)
we show a snapshot of the deformation induced by all
excited modes for ϕ ¼ 0°, 15°, 30°, and 45°. We find that,
while for ϕ ¼ 0° and 45° a pure compression wave prop-
agates through the structure (i.e., all squaresmoves along the
êk direction), for ϕ ¼ 15° and ϕ ¼ 30° two mixed com-
pression-shear solitary modes are excited—a prediction that
matches well with our experimental and numerical results.
Finally, we focus on the transversal self-focusing effect

observed both in our experiments and numerical analyses
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for ϕ ¼ 45°. To better quantify it, for ϕ ¼ 0° and 45° we
extract from both our experiments and numerical simu-
lations the width of the propagating pulses along the ê⊥
direction, W⊥ (see the Supplemental Material [29] for
details). The results shown in Figs. 4(b) and 4(c) indicate
that W⊥ is rather constant with time (or equivalently
distance) for ϕ ¼ 45° and that its variation is significantly
smaller relative to that observed for ϕ ¼ 0°. As such, this
analysis confirms the self-focusing effect observed in the
contour plots of Figs. 1 and 2 for ϕ ¼ 45°.
To summarize, we have used a combination of exper-

imental, numerical, and analytical methods to study the
propagation of nonlinear elastic waves in a 2D soft
mechanical metamaterial comprising a network of squares
connected by thin and highly deformable ligaments. Our
results reveal that the system supports not only the propa-
gation of elastic vector solitons with three components (two
translational and one rotational), but also very rich behaviors
such as compact pulses (akin to sound bullets) and separa-
tion of the pulses into different solitary modes. As such, our
study shows that soft mechanical metamaterials provide a
convenient platform to study nonlinear wave physics.
Moreover, the 3D printability of these systems enables
unique opportunities for engineering wave phenomena,
ultimately providing new opportunities to control and
manage intense vibrations and waves.
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