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In this Letter we propose the Fourier-space diffractive deep neural network (F-D>NN) for all-optical
image processing that performs advanced computer vision tasks at the speed of light. The F-D>NN is
achieved by placing the extremely compact diffractive modulation layers at the Fourier plane or both
Fourier and imaging planes of an optical system, where the optical nonlinearity is introduced from
ferroelectric thin films. We demonstrated that F-D?NN can be trained with deep learning algorithms for all-
optical saliency detection and high-accuracy object classification.
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Performing modern computer vision tasks, especially
with the resurgent deep learning algorithms, requires large-
scale image processing and an increase in demand for
computational resources [1-3]. However, Moore’s law for
electronic computing is continuously slowing down, and
the scale of an electronic transistor is approaching the
physical limit [4,5]. Optical computing offers low power
consumption, light-speed processing, and high-throughput
capability, which possesses the inherent potential to serve
as significant support for high-performance computing
[6-8]. Recent research on metamaterials and nanophoton-
ics have paved the way to the all-optical signal processing
and integrated optical circuit, but most of them can
only implement simple image processing operations, such
as differentiation, integration, and convolution [9-17].
Building the optical neural network has been proven
effective for solving more complex computational prob-
lems, including image classification and speech recognition
[7,18-25]. In this line of work, an all-optical machine
learning framework, termed as a diffractive deep neural
network (D’NN) [18], was recently introduced to perform
the light-speed classification and high-resolution imaging.
However, it only operates in real space and has limited
capability to address more advanced computer vision tasks.
This Letter proposes the Fourier-space D’NN (F-D’NN)
and demonstrates the success of its application for salient
object detection. Besides, we conduct various numerical
evaluations and show that the classification accuracy and
robustness of D°NN is significantly improved by training it
in Fourier space and including the optical nonlinearity.

Salient object detection refers to the detection and
segmentation of salient objects in natural scenes, which
has attracted great interest in the computer vision commu-
nity due to its capability of finding objects or regions for
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efficiently representing a scene [26-30]. Different from the
saliency prediction [31,32] that tries to predict human eye
fixation over an image at first glance, we focus on high-
lighting the most important object regions in an image. As
the number of sensor measurements for capturing larger
field of view and higher resolution images in both pho-
tography and microscopy areas [33,34] has continuously
increased, using only electronic computing has placed a
major bottleneck for processing such high-throughput data
efficiently. This Letter introduces the all-optical salient
object detection by simply placing the D’NN at the Fourier
plane of an optical system, where the sensor directly
measures the salient object detection results. The proposed
architecture is set to work under a visible wavelength of
532 nm, which offers the network with a high resolution
and integration. The quantitative evaluation of the all-
optical saliency detection for both macroscale scenes and
microscopic samples demonstrates the effectiveness of the
proposed approach.

The nonlinear activation function is one of the crucial
components in artificial neural networks. We propose to
employ a specific type of ferroelectric thin film, i.e.,
photorefractive crystal (SBN:60) [35-37] as an optical
nonlinearity layer and present different system configura-
tions to incorporate the nonlinearity layers physically. The
photorefractive crystal’s (SBN:60) nonlinear material
modifies its refractive index with the changing of light
intensity in the medium, which performs the complex
activation function for the output complex field of a neuron.
Such complex threshold preserves the light efficiency in
contrast to the intensity threshold. Training the diffractive
modulation layers of D’NN in both Fourier and real spaces
with nonlinear activation layers enables the fitting of more
complex mapping functions, which significantly improves
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FIG. 1. Salient object detection with Fourier-space diffractive
deep neural network (F-D’NN). The F-D’NN optical image
processing module is formed by inserting the D’NN along with
a photorefractive crystal (SBN:60) at the Fourier plane of an
optical system under coherent light. F-D?NN can achieve all-
optical segmentation of the salient objects for the target scene
after deep learning design of modulation layers.

its performance on the task of classification. With the
presented optical nonlinearity, we also demonstrate that
Fourier-space D’NN can achieve higher classification
accuracy and much more compact structure than real-space
D’NN [18] under the visible spectrum.

The framework of the proposed Fourier-space D°NN is
demonstrated in Fig. 1. Under the coherent illumination,
the complex optical field of a target scene U, is Fourier
transformed and fed into the input diffractive layer of D’NN
through a 2f optical system: Uy = FU,, where F is the
Fourier transform matrix. The D’°NN performs a complex
transform function M in the Fourier space for the input
optical field after training with deep learning algorithms,
which computes the output optical field Ul of a network
through optical diffractions layer by layer: U, = MU, =
MFUO. In this Letter, we target to train phase-only
diffractive modulation layers. By attaching a photorefrac-
tive crystal, the optical field after propagating through
nonlinear material with complex activation function ¢ can
be formulated as U, = ¢(U;) = ¢(MFUj), which is then
Fourier transformed back to the real space with another 2 f
optical system and the sensor measures the intensity
distribution of the optical field at the output plane:

— [FU,> = [Fo(NIFU) .

Dunng the training, input images are encoded into the
amplitude of complex field U, and sensor measurements O
are computed with the formulated forward model, which
are then used to calculate errors with respect to the ground
truth targets O,,. The loss function with mean squared error
evaluation criterion can be defined as e(M) = |O-
I'(Oy)||, where T" represents the operator of reversing
coordinate axes due to the using of two optical Fourier
transforms. The resulting errors are backpropagated to
iteratively update the phase modulation coefficients of

the diffractive neural network and eventually minimize
the loss function. After the training, the F-D?NN frame-
work is fixed and diffractive modulation coefficients are
determined, which can be used for physical fabrication.
More details of network training are provided in the
Supplemental Material [38].

Compared with the real-space D’NN [18], our frame-
work is more natural to preserve the spatial correspondence
by incorporating a dual 2f optical system, which facilitates
those tasks that require an image-to-image mapping. The
transform function is learned in Fourier space since every
different object will have a very different Fourier transform
pattern. To demonstrate, we take the first step to address the
task of salient object detection all optically with the
proposed F-D°NN framework. In the proposed framework,
each input point of the target scene is fully connected to all
of the neurons in the D2NN and maps to the corresponding
location on the detector, where the D°NN statistically learns
to perform saliency filtering on different spatial frequency
components of the target scene after the training, similar to
the spectral residual approach proposed in Ref. [29].
Besides, the employed nonlinear layer can facilitate the
nonlinear representation of the target scene to better capture
its structures than a linear representation. These underline
physical principles place constraints on the searching space
of network and guarantee the reliable estimation of visual
saliency.

We validated the proposed F-D’NN for performing an
all-optical salient object detection by demonstrating its
application in cell segmentation. For this task, the phase-
only modulation layers were designed by training a five-
layer F-D’NN with the pathology slide images from
National Cancer Institute GDC Data Portal [39]. During
the implementation, the numerical aperture of the dual 2f
system was set to match the neuron size of the D’NN so that
the optical diffraction used for computing can be captured
for generating saliency maps on the sensor. We first
demonstrated the unit-magnification system with the net-
work setting details in the Supplemental Material [38]. To
facilitate the practical fabrication of phase modulation
layers with direct femtosecond laser writing [40,41], the
distance between successive layers was optimized and set
to be 100 um that offers the network a highly compact
structure. The network was trained using pathology slide
images of cell type 1 with 2750 images and 250 validation
images. The ground truth saliency detection results used for
training and evaluation are obtained with state-of-the-art
algorithms, including cosaliency detection [27] and robust
background detection (RBD) algorithms [30].

We blindly tested the trained F-D°NN with cell type 1
from testing dataset (500 images) as well as the cell type 2
(250 images) and cell type 3 (250 images) for evaluating
the generalization of the network, as demonstrated in Fig. 2.
The ground truth results in this implementation were
obtained with the cosaliency detection algorithm. The
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FIG.2. Cell segmentation with F-D?NN on testing images. The
F-D?NN is trained (Cell Type 1) and tested (Cell Type 1, 2 and 3)
with pathology slide images from National Cancer Institute GDC
Data Portal [39] for salient object detection and applying it to cell
segmentation. After the training, the patterns of F-D°NN modu-
lation layers (fourth row) are fixed and used to perform all-optical
salient object detection (third row, intensity represents the
saliency level), which can achieve comparable accuracy com-
pared with the state-of-the-art cosaliency detection algorithm [27]
(second row) for the input images (first row). (Scale bar: 200 ym
for the first to the third row, 400 pm for the fourth row. Cell scales
are optically magnified).

results demonstrated that F-D°NN successfully learned to
perform visual saliency detection (third row) for the target
specimen (first row) and obtained comparable results with
respect to the ground truths (second row). As expected, the
saliency detection results segmented out the cells and
revealed their shapes and locations. The cosaliency detec-
tion approach proposed in Ref. [27] imposes a location
constraint that the salient object has a higher probability of
being in the center of a human-made image. However, the
trained F-D°NN is able to learn and average various spatial
features at different locations of the training images; thus
the detection and segmentation results are even better than
the cosaliency detection approach on the peripheral
regions, as marked out in Fig. 2. For the quantitative
evaluation, we calculate the precision-recall (PR) curve
[26] by comparing the saliency detection results of testing
images with respect to the ground truths. The maximum F
measures of average PR curve over three testing datasets for
cell type 1, 2, and 3 are 0.613, 0.653, and 0.451,
respectively. The proposed F-D°NN also works for the
magnification or demagnification system, as demonstrated
in Fig. S1. The same conclusion can be obtained by using
4f system instead of dual 2f system or changing the
ground truth reconstruction algorithm from cosaliency
detection to RBD algorithm as shown in the Figs. S2
and S3, respectively.
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FIG. 3. Video salient object detection with F-D’NN. F-D’NN is
trained with CIFAR-10 database and tested with online video
sequence [42]. F-D’NN modulation layers are converged to the
patterns as shown in the fourth row, which are then used for
performing all-optical salient detection (third row) for input
image sequences (first row). (Scale bar: 80 um).

We further demonstrate the generality of F-D?NN for
video saliency detection of dynamic natural scenes at the
macroscopic scale. With the network setting details in the
Supplemental Material [38] and using the cosaliency detec-
tion results as the ground truth, Fig. 3 shows the testing of
online video sequence [42] after training five layers F-D’NN
with CIFAR-10 dataset [43]. The trained diffractive modu-
lation layers are demonstrated in the last row of Fig. 3, with
which the input video sequence (first row) was tested frame
by frame (240 frames in total) to generate the saliency video
sequence (third row). The Supplemental Video 1 shows the
result of whole video sequences, and the maximum F
measure on the averaged PR curve with respect to the
cosaliency detection algorithm (second row) is calculated
to be 0.726. The results demonstrate the potential application
of the proposed approach for high-speed and robustness
saliency detection of dynamic scenes. To quantitatively
evaluate the performance of the proposed all-optical com-
puting framework with respect to the state-of-the-art visual
saliency detection algorithms, we also test the trained model
with benchmark datasets including the DAVIS [44] and
ECSSD [45]. The corresponding results are shown in the
Figs. S4 and S5 as well as Supplemental Video 2, where the
maximum F measures on the results of the proposed
approach are 0.498 and 0.423, respectively.

Furthermore, we compared the Fourier- and real-space
D?NN under different configurations for both tasks of
saliency detection and object classification, as shown in
Fig. 4. The phase modulation range of each neuron was
constrained to a certain range as details in Fig. S6. We trained
both five-layer Fourier and real-space D°NN on CIFAR-10
dataset “Cat” category and tested the trained model on
“Horse” category. As expected, the real-space D°NNs with
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FIG. 4. The comparisons between Fourier- and real-space D’NN for salient object detection and object classification. (a) Real-space
D?NN cannot achieve correct localization and segmentation of the target while Fourier-space D>NN successfully detects the salient
object and performs the segmentation. The transforming of D?°NN from real-space into Fourier-space and the incorporating of the
nonlinear optical layer significantly reduce its thickness and improve the classification accuracy. (b) The classification accuracy of linear
real-space D?NN saturates with the increasing of layer number. However, with the incorporating of nonlinear optical layers, the
classification accuracy increases with the increasing of layer number, and the hybrid method of Fourier and real-space D>NN can further

improve the accuracy.

or without the nonlinearity fail on the task of salient object
detection due to its difficulty of finding spatial correspond-
ences, while F-D?NN successfully performs the detection by
training and testing on the same datasets that real-space
D’NN used [Fig. 4(a)]. The maximum F measure of saliency
detection on the testing dataset for the nonlinear F-D?NN is
0.641, which outperformed the linear configuration (0.634).
For the task of object classification, we use the MNIST
handwritten digit dataset like Ref. [18] for quantitatively
evaluating different DNN configurations and calculating the
classification accuracy. The photorefractive crystal is incor-
porated as the nonlinearity layer by setting the thickness to be
1 mm for generating enough strength of phase variation
(details in the Supplemental Material [38]). We found that
training linear D’NN in Fourier space not only reduces the
thickness of a five-layer D’NN (layer distance from 3 mm to
100 um) but also improves its classification accuracy (from

92.7 t0 93.5%). By using a single nonlinearity layer behind
modulation layers to the Fourier-space configuration, the
classification accuracy was significantly improved to 97.0%
with the optimal layer distance of 100 ym. The resulting
compact network structure facilitates network fabrication
and physical experiments. Increasing the number of non-
linearity layers achieves comparable classification accuracy
(Fig. S7), but it decreases the performance of saliency
detection (Fig. S2) and reduces the feasibility for physical
implementation. Therefore, the nonlinear F-D°NN in this
Letter is configured with a single nonlinearity layer. With a
comparable system length of nonlinear F-D°NN, the five-
layer real-space D’NN configured with five nonlinearity
layers has the classification accuracy of 95.4%. The classi-
fication accuracy of linear real-space D’NN saturates with the
increasing of layer number from five to ten, but with the
nonlinearity layer, ten layers of nonlinear D’NN at real space
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has the classification accuracy of 96.8%. By placing the
diffractive modulation layers on both Fourier space and real
space, a five-layer nonlinear hybrid D’NN configuration has
the classification accuracy of 96.4%, which can be improved
to 98.1% with ten layers. All convergence plots of the
described D°NN configurations on the MNIST blind testing
dataset are demonstrated in Fig. 4 (bottom row). In the
Supplemental Material [38], we further evaluated the robust-
ness of F-D?NN with respect to the fabrication and alignment
errors on performing the tasks of classification (Fig. S8) and
saliency detection (Fig. S9) and demonstrated the feasibility
of the proposed architecture for physical experiments.

To conclude, we have shown that the F-D?NN can be
applied to achieve advanced image processing and com-
puter vision tasks at the speed of light. We validated the
effectiveness of the proposed approach for high-accuracy
visual saliency detection and object classification through
various numerical experiments. Similar to coded aperture
imaging techniques, such as phase contrast microscopy, our
method can be implemented as an intelligent optical filter
and adapted to different imaging systems including com-
mercial microscopes and cameras.

The executable codes and datasets in this Letter are
available upon reasonable request.
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