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Computing marginal distributions of discrete or semidiscrete Markov random fields (MRFs) is a
fundamental, generally intractable problem with a vast number of applications in virtually all fields of
science. We present a new family of computational schemes to approximately calculate the marginals of
discrete MRFs. This method shares some desirable properties with belief propagation, in particular,
providing exact marginals on acyclic graphs, but it differs with the latter in that it includes some loop
corrections; i.e., it takes into account correlations coming from all cycles in the factor graph. It is also
similar to the adaptive Thouless-Anderson-Palmer method, but it differs with the latter in that the
consistency is not on the first two moments of the distribution but rather on the value of its density on a
subset of values. The results on finite-dimensional Isinglike models show a significant improvement with
respect to the Bethe-Peierls (tree) approximation in all cases and with respect to the plaquette cluster
variational method approximation in many cases. In particular, for the critical inverse temperature /3. of the
homogeneous hypercubic lattice, the expansion of (df3.)~! around d = oo of the proposed scheme is exact

up to d~* order, whereas the latter two are exact only up to d~2 order.
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Introduction.—Markov random fields (MRFs) are undi-
rected probabilistic graphical models in which random
variables satisfy a conditional independence property so
that the joint probability measure can be expressed in a
factorized form, with each factor involving a possibly
different subset of variables [1]. Computing marginal dis-
tributions of discrete or semidiscrete Markov random fields
is a fundamental step in most approximate inference
methods and high-dimensional estimation problems [2],
such as the evaluation of equilibrium observables in stat-
istical mechanics models. The exact calculation of marginal
distributions is, however, intractable in general, and it is
common to resort to stochastic sampling algorithms, such as
the Monte Carlo Markov chain model, to obtain unbiased
estimates of the relevant quantities. On the other hand, it is
also useful to derive approximations of the true probability
distribution, for which marginal quantities can be determin-
istically computed. An important family of approximations
is the one of mean-field (MF) schemes. The simplest is naive
mean-field (NMF) scheme, which neglects all correlations
between random variables. An improved MF approximation
[3] called Thouless-Anderson-Palmer (TAP) equations,
works well for models with weak dependences, but it is
usually unsuitable for MRFs on diluted models. Here, a
considerable improvement is provided by the Bethe-Peierls
approximation or belief propagation (BP), which is exact for
probabilistic models defined on graphs without loops [4].
It is a fact that BP has been successfully employed even in
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loopy probabilistic models both in physics and in applica-
tions (see, e.g., Berrou et al. [5]), yet the lack of analytical
control on the effect of loops calls for novel approaches that
could systematically improve with respect to BP. A tradi-
tional way to account for the effect of short loops is by means
of cluster variational methods (CVMs) that exactly treat
correlations generated between variables within a finite
region R [6-8]. The main limitation of the CVM resides
in its algorithmic complexity that grows exponentially with
the size of the region R. A completely different path to
systematically improve BP is represented by loop series
expansions [9-12] in which BP is obtained as a saddle point
in a corresponding effective field theory. Loop corrections to
BP equations can be alternatively introduced in terms of
local equations for correlation functions, as first suggested
for pairwise models [13] and later extended to arbitrary
factor graphs [14—16]. This method consists of considering
deformed local marginal probabilities on a “cavity graph”
obtained by removing a factor node (i.e., interaction) and
imposing a consistency condition on single-node marginals.
On trees, BP equations are recovered, whereas on loopy
graphs, the obtained set of equations is strongly under-
determined and requires additional constraints. Linear-
response relations were exploited for this purpose in
Ref. [13], even though other moment closure methods are
possible [14].

A different approach to approximate inference exploits
the properties of multivariate Gaussian distributions that
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have the advantage of retaining information on correlations
albeit allowing for explicit calculations. In particular,
expectation propagation (EP, which can be thought as an
adaptive variant of TAP) is a very successful algorithmic
technique in which a tractable approximate distribution is
obtained as the outcome of an iterative process in which the
parameters of a multivariate Gaussian are optimized by
means of local moment matching conditions [17,18]. EP
has been applied to problems involving discrete random
variables by employing atomic measures [19]. In the
present work, we put forward a new family of computa-
tional schemes to calculate approximate marginals of
discrete MRFs. We exploit the flexibility of multivariate
Gaussian approximation methods, but, unlike EP and
inspired by the beliefs marginalization condition in BP,
we impose that marginals over factors are locally consistent
on each variable, a condition that we call density consis-
tency. When the underlying graph is a tree, the set of
equations produced is equivalent to BP. As for Ref. [13],
the density consistency condition leaves an underdeter-
mined system of equations on loopy graphs that can be
solved once they are supplemented with a further set of
closure conditions. As a result of employing Gaussian
distributions, higher-order correlation functions between
neighbors of a given variable are, at least partially, taken
into account.

The model.—Consider a factorized distribution of binary
variables xi,...,x, € X = {—1,1} for arbitrary positive
factors w,: X, - R, each depending on a subvector
Xq = {xi}ieaa € Xa’

p) == [l (1

acA

The bipartite graph G = (V, E) with V = I U A the disjoint
union of variable indices / = {1, ..., n} and factor indices
and E = {(ia):i € da} is called the factor graph of the
factorization (1), and as we will see, some of its topological
features are crucial to devise good approximations.
Particular important cases of Eq. (1) include, e.g., Ising
spin models, many neural network models, and the uniform
distribution of the solutions of k-SAT formulas. Computing
marginal distributions from Eq. (1) is, in general, NP hard
(i.e., computationally intractable).

Density consistency.—Following Gaussian expectation
propagation (otherwise called adaptive TAP or expectation
consistency) [17,18], we will approximate an intractable
p(x) by a normal distribution g(x). To do so, we will
replace each v, (x,) by an appropriately defined multivari-
ate normal distribution ¢, (x,) = N (x,;u* ). The
parameters u?, X4 will be selected as follows. First define

1 1 T
9(x) = = [Jpalx) = = et o),

Zgt; z

and g(a)(x) = Z%‘g(x) chan,, 5(xa _ﬁa)[l//a(ﬁa)/(ﬁa(ﬁa)]’
gD (x) = Zl 9(x) D s,ex 6(x; — &;) as auxiliary distributions.
Matching between the marginals ¢)(x;) and ¢\¥(x;)
results in

g—; = atanh(x;) o), (2)
Vi€ da,a € A, giving >, |0a| equations. As we will see,
Eq. (2) is chosen because it ensures exactness on acyclic
graphs. We call density consistency (DC) any scheme
that enforces Eq. (2). We propose to complement Eq. (2)
with matching of the first moments and Pearson correla-

tion coefficients corrp (x,y)=((xy)o—(x)o () o) ((x*)o—
<x>%~))‘%(<y2>Q—<y>2Q)‘% (although other closures are
possible; see the Supplemental Material [20])

Hi = <xi>g(”> >

for i # j where p € [0, 1] is an interpolating parameter that
is fixed to 1 for the time being. Relations (2) and (3) give a
system of >, |0al(|0a| + 3)/2 equations and unknowns
that can be solved iteratively to provide an approximation
for the first (x;), and second moments (x;x;) —of the

original distribution. In a parallel update scheme (in which
all factor parameters are updated simultaneously), the
computational cost of each iteration is O(N?) dominated
by the calculation of X.

On acyclic factor graphs, the method converges in a
finite number of iterations and is exact; i.e., on a fixed
point, (x;), equals the magnetization (x;),. Therefore, as
both the DC scheme and BP are exact on acyclic graphs,
their estimation of marginals must coincide. However, a
deeper connection can be pointed out. If a DC scheme
applies zero covariances [e.g., by setting p = 0 in Eq. (3)],
on a DC fixed point on any factor graph, the quantities
m,; = tanh (u¢/%%) satisfy the BP equations. Moreover,
DC dynamically follows a BP update. In particular,
when the equations converge, the magnetizations m; =
tanh (u;/X;;) are equal to the corresponding belief magne-
tizations (proof in the Supplemental Material [20]).

Interestingly, the DC scheme can be thought of as a
Gaussian pairwise EP scheme with a modified consistency
condition. The latter can be obtained by keeping Eq. (3) and
replacing atanh(x) on the rhs of Eq. (2) with the qualita-
tively similar x/(1 — x?). This of course renders the method
inexact on acyclic graphs and turns out to give generally a
much worse approximation in many cases (see the
Supplemental Material [20]). In addition, as it also happens
with the EP method, the Gaussian densities in factors y,,
can be moved freely between factors (sharing the same
variables) without altering the approximation (details in the
Supplemental Material [20]).
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FIG. 1. Comparison of the DC, BP, and LCBP on single instances of disordered systems. (a) Magnetizations of the antiferromagnetic

Ising model on a triangular lattice with N = 100, |E| = 6N, J = —1, # = 0.52, and random binary fields of | ;] = 0.2. (b) Magnetization
of the ferromagnetic Ising model on a random regular (RR) graph, N = 300, degree 4, f = 0.35, J = 1, and random binary fields of
|h;] = 0.3. (c) Correlations of the (heterogeneous) Ising model on a Barabasi-Albert graph, N = 100, n, = k = 2 without external fields
(the solution is found by using p* = 0.95, and it is divergent for p > p*). (d) Magnetizations of a random 4-SAT instance at a =
(M/N) =4 at § — o0. (e) Correlations of (heterogeneous) the ferromagnetic Ising model on a RR graph, N = 300, degree 4, and
S = 0.3. (f) Correlations on a 3D hypercubic toroidal lattice ferromagnetic (heterogeneous) Ising model, N = 6 and # = 0.21, and no
external fields. In heterogeneous ferromagnetic models, couplings are drawn from a uniform distribution in (0.5,1.5).

Numerical results.—We tested the method on the Ising
model in many different scenarios of heterogeneous systems,
with a selection of results given in Fig. 1. The true values for
the magnetization and correlations were computed approx-
imately with long Monte Carlo runs (1 x 10°N-2 x 105N
Monte Carlo Gibbs-sampling steps) for Ising models and
with the exact (exponential) trace for up to N = 28 in the
case of k-SAT. All simulations have been performed with a
damping parameter of around 0.95 to improve convergence.
The DC method provides a substantial correction to BP
magnetizations and correlations in almost all cases (details in
the Supplemental Material [20]); it also improves single-
node marginal estimates with respect to loop corrected belief
propagation (LCBP) [14] in several cases. LCBP simulations
were performed using the code provided in Ref. [21]. We
underline that despite the computational cost per iteration of
LCBP on bounded-degree graphs being O(N?), the pre-
factor strongly depends on the degree distribution (with even
exponential scaling in some cases); also, the number of
iterations required to converge is normally much larger than
the one of DC. For instance, for antiferromagnetic models
[like the one shown in Fig. 1(a)], LCBP does not seem to
converge at smaller temperatures.

Homogeneous Ising model—Consider a homogeneous
ferromagnetic Ising model with coupling constant J and
external field 2 on a d-dimensional lattice with periodic

(toroidal) boundary condition: because of the translational
invariance, all Gaussian factors ¢, are identical, and the
covariance matrix admits an analytic diagonalization.
Therefore, it is possible to estimate equilibrium observables
through an analytical DC scheme also in the thermody-
namic limit. After some calculations (see the Supplemental
Material [20]), at a given temperature the DC solution is
found by solving the following system of three fixed point
equations 6, = (m/atanhm), o, =p[(c—m?)/(1—m?)]o,
and y = m(yy + 7;) in the Gaussian parameters y, yq, 71,
where m = (x;) 0, ¢ = (xix;) o are the moments com-
puted under the “tilted” distribution ¢'*), and 6y, o1, 79, 71
equal, respectively, X, X, (2d)'(Z7");, (271, for
i, j two first lattice neighbors. Defining R,(r) =
Lo dt e T{(rt), where Z; is the modified Bessel func-
tion of the first kind of order 0, and after some straightfor-
ward algebraic manipulations, we finally obtain the
following equations (here, h*™' =0 for simplicity) for
variables 8, m, r = y,7p,

i’

= ath [k; +om? (1 _ ";)} - g,% _ath[th2(£,0)],  (4)

m = th{f,h + ath {th (ﬁ + %) th(frh)] } (5)
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TABLE L.

Critical values obtained with different approximation schemes of the inverse temperature f marking the

onset of spontaneous magnetization in the homogeneous Ising model on infinite d-dimensional hypercubic lattices.
The values of fgp, fpcvm, and ficgp, respectively, refer to the Bethe-Peierls approximation, plaquette cluster
variational method [23], and loop corrected Bethe [13] approximation, while $,, and f3,,, respectively, correspond to
the maximum f of the paramagnetic DC solution and the minimum f of the magnetized DC solution, and /..
indicates the currently best-known approximation up to numerical accuracy (Ref. [23] for d < 5, Ref. [24] for
d = 6). Results in bold indicate the closest value to the last column.

d ﬁBP ﬂPCVM ﬁLCB ﬁm ﬁp ﬂc

2 0.346 57 0.412258 () 0.388 448 0.376 93 0.440 687

3 0.20273 0.216 932 0.238 520 0.218 908 0.222223 0.221 654(6)
4 0.143 84 0.148 033 0.151 650 0.149 835 0.149 862 0.149 66(3)
5 0.11157 0.113 362 0.114 356 0.113946 0.113946 0.113 88(3)
6 0.091 16 0.092 088 0.092 446 0.092 304 0.092 304 (0.092 253 0)

where kr:[(1_2de(r))/r2de<r)]’ 9r = [kr/(l - k%)—’_
rRy(r), f,=[1/(1+k,)=(r+1)R,(r)], h = athm, while
the functions th and ath denote the hyperbolic tangent and
its inverse, respectively. Substituting Eq. (4) into Eq. (5),
we get a single equation for m, r, allowing for a parametric
solution m(r), p(r).

The maximum value of f for which a paramagnetic
solution exists can be analytically derived by substituting
m = 0 and taking sup_,_,of(r) from Eq. (4). For d >3

[22], the maximum is realized at » = —1, obtaining
1 xd(xd - 1) Xq
=ath|{]l—-—— ) ———24—=, 6
Pp=2 ( xd> 2,1 " 2d (6)

where x,; = 2dR,(—1). Values of g, for various dimen-
sions d are reported in Table I. The paramagnetic solution is
stable in the full range 0 < < f3, for d > 3.

Expanding Eq. (6) in powers of d~!, we get 1/(2dp,) =
1-1d' - %d‘z — (13/24)d* - (979/720)d~* — (2039/
480)d=> + O(d=°), which is exact up to the d~* order (the
correct coefficient of d=> is —(2009/480)) [24]. For
comparison, NMF is exact up to the d° order, BP is exact
up to the d~! order, while the loop corrected Bethe (LCB)
[13] approximation and plaquette CVM (PCVM) [23] are
exact up to the d=2> order.

The minimum value of S for which a magnetized
solution exists can also be computed by seeking a point
with (df/dr) = 0 with the complication that m is defined
implicitly by Egs. (4) and (5) (details in the Supplemental
Material [20]). The resulting equation has a single solution
that has been numerically computed and shown in Table I
as f3,,. It turns out to be smaller but always very close to f3,,
and coincident up to numerical precision for d > 5. Note
that for inverse temperatures in the (albeit small) range
B <P < pB,, the DC approximation has both magnetized
and paramagnetic stable solutions, suggesting a phase
coexistence that should be absent in the real system [25].

Discussion.—We proposed a general approximation
scheme for distributions of discrete variables that show

interesting properties, including being exact on acyclic
factor graphs and providing a form of loop corrections on
graphs with cycles.

In the same spirit as PCVM and LCBP, the DC
approximation can be thought of as a method to correct
the cavity independence (or absence of cycles) assumption
in the Bethe-Peierls approximation. Whereas PCVM deals
only with local (short) cycles, it is true that LCBP and DC
both attempt to correct for arbitrarily long cycles in the
interaction graph. However, they do so through crucially
different approaches. LCBP works by computing several
BP fixed points (one for each cavity distribution in which
one node and all the factors connected to it are removed)
and then imposing consistency over single-node beliefs
among them. Therefore, for each cavity distribution, it
computes fixed points by still assuming a tree factorization,
i.e., by neglecting the correlations coming from other
cycles in the graph. Therefore it computes a higher-order
approximation by relying on a lower order one, computed
on a modified or simplified interaction graph. In this sense,
it can be considered as a first-order correction to BP, and
indeed it improves BP estimates of single-node marginals,
as shown in Fig. 1. With this perspective, DC can be
considered as a new approximation in which all two-point
cavity correlations are taken into account (of course, in an
approximate way, through a Gaussian distribution) in a
single self-consistent set of equations in which correlations
arise simultaneously from all cycles in the graph.

The method can be solved analytically for homogeneous
systems such as finite-dimensional hypercubic lattices with
periodic conditions. Analytical predictions from the model
show a number of interesting features that are not shared by
other mean-field approaches: The method provides finite-
size corrections which are in close agreement with numeri-
cal simulations; the paramagnetic solution exists only for
p < B, (in PCVM and BP, the paramagnetic solution exists
for all # > 0, although it stops being stable at a finite value
of f); it can capture some types of heterogeneity where
the Bethe-Peierls approximation cannot (such as in RR
graphs). Numerical simulations are in good agreement with
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Monte Carlo estimates on different models, including the
random-field Ising model with various topologies and
random k-SAT. On lattices, the method could in principle
be rendered more accurate by taking into account small
loops explicitly. The DC scheme can be extended for
models with g-state variables by replacing each of them
with g binary variables. Again, in this setup it is possible to
get a similar set of closure equations that are exact on
acyclic graphs and recover BP fixed points on any graph
when neglecting cavity correlations. This will be the
subject of future research.
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