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A new distribution for systems of particles in equilibrium obeying the exclusion of correlated states is
presented following Haldane’s state counting. It relies upon an ansatz to deal with the multiple exclusion
that takes place when the states accessible to single particles are spatially correlated and it can be
simultaneously excluded by more than one particle. Haldane’s statistics and Wu’s distribution are recovered
in the limit of noncorrelated states of the multiple exclusion statistics. In addition, an exclusion spectrum
function G(n) is introduced to account for the dependence of the state exclusion on the occupation number
n. The results of thermodynamics and state occupation are shown for ideal lattice gases of linear particles of
size k (k-mers) where the multiple exclusion occurs. Remarkable agreement is found with grand-canonical
Monte Carlo simulations from k£ = 2 to 10 where the multiple exclusion dominates as k increases.
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Quantum fractional statistics has drawn considerable
interest in condensed matter physics since the early
theoretical contributions [1-7] because of its ability to
describe physical phenomena such as the fractional quan-
tum Hall effect [4,8,9], spinor excitations in quantum
antiferromagnets [10,11], high-temperature superconduc-
tivity [12], quantum systems in low dimensions [13-16],
and, more recently, its implications in the field of cosmol-
ogy and dark matter.

Concerning quantum physics of strongly interacting
many-particle systems, in a seminal work, Haldane [5]
introduced the quantum fractional statistics (FE) and the
definition of the statistical exclusion parameter g,
0<g<1, being the Bose-Einstein (BE) and Fermi-
Dirac (FD) the boundary statistics for g =0 and g =1,
respectively. Later, Wu [17] derived the statistical distri-
bution for an ideal gas of fractional-statistic particles. These
papers were a major contribution to describe quantum
systems in one and two dimensions, like anyons in a strong
magnetic field in the lowest Landau level [18] and
excitations in pure Laughlin liquids [8,19,20].

On the other hand, classical statistical mechanics of
interacting large particles of arbitrary size and shape is a
relevant problem, since it is a major challenge to properly
account for the generally complex entropic contribution to
the free energy. Many physical systems, ranging from small
polyatomics and alkanes to protein adlayers, resemble these
characteristics. The multisite occupancy problem was
addressed long ago by the approximations of Flory-
Huggins [21-24] for binary solutions, lattice gases of
particles of arbitrary size and shape made of a number k
of linked units (k-mers) [25], and it has been referred as the
prototype of the lattice problem [26]. Among the motiva-
tions, we can also mention Cooper and vortex pairs
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modeling [27,28], clusters diffusion on regular surfaces
[29,30], and thermodynamics of polyatomic adlayers [31—
33], which represents a current open problem in statistical
physics of gas-solid interfaces. The FE and Wu’s distri-
bution were already reinterpreted in the domain g > 1 to
model the thermodynamics of linear k-mers, ideal lattice
gases behaving statistically like “superfermions” [34] and
resulting in the exact one-dimensional (1D) solution for
g =k [35]. As shown later, in 1D effective correlations
between states do not arise; however, they do in two or
higher dimensions as considered here.

This Letter addresses the statistical mechanics of iden-
tical particles in equilibrium occupying a set of spatially
correlated states and obeying statistical exclusion in
a confined region of the space. We refer to this as
multiple exclusion due to the fact that, because of spatial
correlations, the states accessible to single particles can be
simultaneously excluded by more than one particle in the
system. Furthermore, it is not related to mutual exclusion,
as clearly defined by Haldane [5] and Wu [17], to refer to
exclusion statistics between different species within a space
region.

A classical realization of multiple exclusion phenomena
are given by the physical models of lattice gases of k-mers.

In what follows, we develop statistics for systems of
many particles with state exclusion between spatially
correlated states, which reduces to Haldane-Wu’s FE for
statistically independent states (constant exclusion g) and,
correspondingly, to the FD and BE ones. Let us consider a
system of volume V containing N identical particles,
having G states accessible to a single particle. The
canonical partition function is Q(N,T,V) = Y ,e PN,
where H;(N) denotes the Hamiltonian of the ith state and
p = 1/k,T (k, is the Boltzmann constant). For the sake of
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simplicity, we address a homogeneous system of N non-
interacting identical particles in the volume V (other than
the fact that the states they can occupy are not independent
one of each other). By defining dj as the number of states
in V accessible to the Nth particle after (N — 1) have been
added to V, then Q(N,T,V) = W(N)eNVogV with [5]

(dy +N—1)!

WN) = Ni(dy — 1)1

(1)

where U, and ¢; are the energy per particle and the
internal partition function, respectively. In the limit
n = limy 6_,N/G, the thermodynamic functions are

. . F(N,T.V) _
PR =06 =

InQ(N,T,V)
N,G—x G

= pnU, — [d(n) + n]In[d(n) + n] + d(n) Ind(n)
+nlnn (2)

e SNLTLY)
LT  Nosw G
= [d(n) + n]In[d(n) + n] —d(n) Ind(n) — nlnn,

(3)

and the chemical potential ¢ = (OF /dn), satisfies

,_ nld(m)”™
K(T)eﬁ _W’ (4)

where d(n) = limy _dy/G, d'(n)=d[d(n)]/dn and
K(T) = e Plog,.

From Eq. (4), two related quantities are defined that will
be later useful to fully interpret the state exclusion under
spatial correlations. If the system of particles in V is now
assumed to exchange particles with a bath at chemical
potential u and temperature 7', the time evolution of the
state occupation n is given by

dn

—=PW,_..
dt

-P.W._,, (5)
where P,(P.) is the average fraction of empty (occupied)
states in V and W__.(W._,) is the transition rate for an
empty (occupied) state to get occupied (empty). In equi-

librium, dn/dt=0, W._./W..,=P./P, = PtV
P. = n. From Egs. (4) and (5),

P.(n) = P.(n)e Pw=U.) = [

In addition, we introduce a new useful quantity, namely,
the exclusion spectrum function G(n), being the average

number of excluded states per particle at occupation n [36].
Thus, G(n) = ((1/N) X%, ¢;),

6= (g 2=y | 1=Pol0)] =2 ()

for N, G — oo, where ¢; = 1 if the state i out of G is either
occupied or excluded by any of the N particles, or ¢; = 0
otherwise, and the average is assumed to be taken over the
canonical ensemble. The identity ((1/G) >.%, e; + P,) =
1 follows from the definition of P,. G(n) characterizes the
density dependence of the state exclusion for a spatially
correlated many-particle system from zero density to
saturation.

It is worth noticing that the rightmost side of Eq. (7) also
provides an operational formula to infer the exclusion
spectrum G(n) from experiments. For instance, for
adsorbed species under equilibrium conditions (¢, T), n
is related to the surface coverage (so-called adsorption
isotherm) and U,, is obtained from the low-density regime
of n(u, T).

Spatially correlated states leading to multiple exclusion
can be visualized, for instance, in the classical system of
linear particles occupying sites on a square lattice (Fig. 1).
Given the set of states for a single particle containing all its
possible configurations on the lattice, clearly an isolated
dimer (C;) occupies one state while excluding six more
states from being occupied by other particles. For a larger
number of particles on the lattice, there exist configurations
in which some states are excluded simultaneously by
neighboring particles (C,, Cs, and Cy). This is called here
“multiple exclusion”, arising from spatial correlation
between states, and it has significant effects on the
thermodynamics of the system.

It is known that the exact counting of configurations for
an arbitrary number of particles on the lattice seems a
hopeless task and it is still a relevant open problem in
classical statistical mechanics. From here on, dy[d(n)] is
obtained through an approximation extending Haldane-
Wu’s state counting procedure to a system of correlated
states that determines the analytic multiple exclusion
statistical distribution and the thermodynamics of the
system. Given that the total number of states in V is G,
as we add particles from the first to the (N — 1)th, the

FIG. 1. Local configurations of dimers on a square lattice. C|
shows the states (dashed) excluded by an isolated particle. C,, C3,
and C, depict states (dashed) multiply excluded by neighboring
dimers, 1, 2, and 6 for C3, C,, and Cj, respectively.
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recursion relations can be written as dy =G, d, =

- N\, ....dy = dy_y — N'y_, where N is the number
of states occupied, plus excluded only by the jth particle.
Considering that a jth particle added to V' occupies one
state and, in addition, it excludes a yet undetermined
number of states out of G, we write the relation
N ;= 1+G,;, where G; is the number of states excluded
only by the jth particle [it does not account for the states
excluded by j that were already excluded by any of the
particles 1, ..., (j — 1) because of the spatial correlations or
so-called multlple state exclusion]. g has to be rational-
ized as an average of over all the conﬁguratlons of particles
1,.....,j on the G states. For j = N and N,G — oo with
N/ G = n, it is straightforward that G,.; will converge to a
value depending only on the ratio N/ G = n (as observed in
simulation). Now we establish the following ansatz to
determine dy [36]:

where G.; = g.(d;/G), i.e., a system-dependent exclusion
constant g, times the fraction d;/G of states that can be
excluded by particle j. It is worth mentioning that the
second term in Eq. (8) resembles a sort of mean- or
effective-field approximation on the set of states that in
the limit N,G — oo will depend only on the mean
occupation number n = N/G. Based on Eq. (8), we
can rewrite the recursion relations as d; =G,
dy=d,—[1+g.(d/G)|.dy=dr~[1+g.(dy/G)] =
G[l_(gc/G)]z_[l_(gc/G”_ "dN:dN—l_{1+
gc[(dN—l)/G]} = G[l - (Ngc/G)]N_l - i\’=—02[1 - (gc/G)]l

By taking the limit d(n) = limy g_dy/G, it yields
d(n) = e "% — n. d(n) is defined except for two constants,
say, d(n) = Cje™"% — C,n, provided that it must satisfy
the boundary conditions d(0) = 1 and d(n,,)=d(1/g) =
where the usual Haldane’s exclusion constant g is used here
to denote the number of states excluded per particle at
maximum occupation, n, =N, /G = (G/g)/G =1/qg.
Thus, C; = 1 and C, = ge~%/9) and, finally,

d(n) = e_ngc —_ ge_(gf/!/)n‘ (9)

We may even think of g. in Eq. (8) as depending
on j, ie., g.. The recursion relations will lead to
dy = dy_[1 — gc(N—l)/G] -1= GH?L‘# 1 -g.,/Gl-

s j:_il l-g.,/Gl =1 If g; =g+ Ajns
where A;y is finite, then dy = G[l—g./G]"™' -

N1 =gn/GY + O(1/G). In the limy g_dy/G, it
yields d(n) = e™"9%(") —n, where g.(n) = limy G_coGen-
From this, the ansatz (8) is the simplest assumption on
ge(n), g.(n) = g. = constant, through which state exclu-
sion is introduced in the state counting in the presence of

spatial correlations. This results in a fairly accurate
approximation, as shown by comparing predicted observ-
ables and simulations for linear particle lattice gases.
The exclusion constant g,. is fully determined by the zero
density limit of the mean number of states excluded
particle, G(n). Accordingly, from Egs. (6), (7), and (9),

G, = lmG(n)

= lim[l — Py(n)]/n = 2ge%/7 +2g. — 1, (10)
G, being the state exclusion at zero density, i.e., the number
of states excluded by an isolated particle in the system.
Moreover, lim,_,,, G(n) = lim,_, [l —P,(n)]/n = g. The
two exclusion constants, g. and g in Eq. (9), come from the
infinite dilution and saturation limits of G(n), respectively.

From here on, we analyze linear k-mers ideal lattice
gases under the proposed framework. We mean by linear k-
mers, linear rigid particles made of k identical beads
occupying k consecutive sites (one bead per site) on a
regular lattice. For instance, this is a simple model for small
polyatomics-hydrocarbons adlayers. For k-mers on a one-
dimensional (1D) lattice, g = k, G, =2k —1 =29 — 1, the
solution of Eq. (10) is g. =0V k( V g) and the case
reduces to Haldane’s FE and Wu’s distribution with g = k
resulting in the exact density dependence of the chemical
potential 4 = u(n)y from Eq. (4) (already derived in [34]
for noninteracting k-mers in 1D). In a k-mer 1D lattice gas,
each state of N k-mers on a lattice with M = G sites and
n = N/M can be mapped onto one of N monomers on an
equivalent lattice with M’ =M — (k—1)N sites and
n'=N/M' = n/[l — (g — 1)n]. Thus, there is not effective
spatial correlation between excluded states for k-mers in
ID. On the other hand, for k-mers on a square lattice of M
sites, G =2M, n,,=N,,/G=(M/k)/2M=1/(2k)=1/g,
then g =2k and G, = k* + 2k — 1 = (¢*/4) + g— 1. The
solution of Eq. (10) is g. = (¢*/8) + (g9/2) + gL(z) for
g>4, where L(z) is the positive solution of z =
W(z)e™@, W(z) being the Lambert function, namely,
the inverse of f(x)=xe*, x=W(xe*). Accordingly, g. = 0
fork =2(g=4), 9. = 4.807 fork = 3(9g = 6), g. = 9.586
for k =4(9=38), g. = 15.344 for k =5(g=10), g
22.096 for k = 6(g = 12), g. = 29.838 fork = 7(g = 14)
g. = 38563 for k=8(g=16), g.=48.267 for
k=9(g=18), and g.=58.950 for k= 10(g = 20).
Furthermore, lim;_, 9. = G,/2.

From Eq. (4), the occupation number n, in general,
satisfies the following relation, formally almost identical to
the transcendental equation first derived by Wu [17]:

[d(n) +

where & = ¢f(Uo=#) From the explicit form of d(n)
[Eq. (9)], the distribution function can be symbolically
written as

p

Al ()] = neP o) = pg, (1)
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e—g[.n

w(&) + ge 9/9” 12)

n =

similar to Wu’s distribution, where n = n(£) is the solution

of the transcendental Eq. (11) and w(&) = d(n)/n. For
particles with exclusion parameter g on spatially non-
correlated states, g, =0, d(n) = 1 —gn, and Haldane’s
FE is recovered and Eq. (12) reduces to Wu’s distribution
[17]. Furthermore, d'(n) = —g for g. = 0, thus W(n) =
E—1 for g=0 and w(n) =¢& for g =1, resulting in
Eq. (12) and the BE and FD statistics, respectively.
Given that w(n) = d(n)/n > 0, from Eq. (12) the occu-
pation number’s range is 0 <n <1/g. At temperature
T = 0 (absolute scale), the distribution takes the steplike
form n=1/g for U, <pu and n=0 for U, > u, as
expected.

Monte Carlo (MC) simulations of k-mers lattice gases
were carried out in the grand-canonical ensemble through
the efficient algorithm introduced by Kundu et al. [37,38]
to overcome the sampling slowdown at high density due to
the jamming effects. The temperature, chemical potential
pu, and system’s size are held fixed and the number of
particles on the lattice are allowed to fluctuate through
nonlocal changes, i.e., insertion and deletion of k-mers at a
time (in contrast to the standard Metropolis algorithm).
Shortly, given a configuration of k-mers on the lattice, one
MC step is fulfilled by removing all horizontal k-mers and
keeping the vertical ones. The probabilities corresponding to
horizontal segments of unoccupied sites are exactly calcu-
lated and stored for all the segment sizes. Then segments are
occupied by k-mers with probabilities accordingly deter-
mined. An identical procedure is carried out in the vertical
direction. A reproduction of these calculations is out of the
scope of this Letter. A detailed discussion is found in the
original work of Refs. [37-39]. The algorithm has proved to
be ergodic; it satisfies the detailed balance principle and
equilibrium is reached after typically 10" MC steps. L x L
square lattices with periodic boundary conditions were used.
The ratio L/k was set to 120. With this value of L/k, we
verified that finite size effects are negligible. The observ-
ables G(n) [Eq. (7)] and n = (N)/G = (N)/(2L?) were
calculated by averaging over 107 configurations. The dis-
tribution function n versus f(u — U,) [Eq. (4)]) is repre-
sented in Fig. 2 and compared with a simulation for linear
particles of size k =2 to k = 10.

The analytical predictions are accurate for all the particle
sizes, being much better as k increases up to k = 7. The
ansatz in Eq. (8) does not account explicitly for the
system’s dimensionality, shape, or particle size and lattice
structure, but all the state correlations are embedded in the
exclusion constant g,.. For instance, the solid line in Fig. 2
for k = 2 represents approximately the simulation results
for dimers on the square lattice, k = 2(G, = 7,9 = 4), and
it does exactly for tetramers on a 1D lattice, k =
4(G, =7,9 = 4). For both cases, the solution of Eq. (10)
is g. = 0.

0.25

e k=

0.204

0.154

— 00 N L AN

0.104

0.05 4

ﬂ(l‘*Uo)

FIG. 2. State occupation number 7 versus f(u — U,) for k = 2,
4,5,6,7,8, 10 on a square lattice. Lines represent the analytical
predictions from Eq. (4); symbols come from simulations. (Inset)
The case k = 10 for a smaller g. = 39, so as to visualize the state
exclusion effect of the nematic ordering.

For k > 7, it is known that a nematic transition develops
at intermediate lattice coverage with particles aligned along
a lattice direction in compact clusters [40]. Its effect is
clearly seen in Fig. 2 for the case k = 10 at intermediate
occupation, where simulation and analytical function
do not match. However, because the nematic ordering
increases the number of multiply excluded states per
particle, n can very accurately be represented by the
multiple exclusion statistics for a smaller value of the
constant g, [according to the meaning of the corresponding
term in Eq. (8)], as shown in the inset of Fig. 2.

In addition, results for the exclusion spectra Q(n) from
Eq. (7) are shown in Fig. 3 as a function of the lattice

120

FIG. 3. Exclusion spectrum G(6) for k =2 to k = 10 (from
bottom to top). Solid lines are analytical results from Eq. (7) with
n=0/g=6/(2k). Symbols represent simulations.
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coverage 0 = k(N)/M, where (N) and M represent the
average number of particles on the lattice and the number of
lattice sites, respectively. Given that 6 = k(N)f/M =
k(N)/(G/2) =2k(N)/G = gn, all the quantities above
can be expressed in the nomenclature of lattice coverage
by the variable change n =6/g with 0 <0 < 1. The
adsorption isotherm (u versus ) follows straightforwardly
from Eqs. (4) and (9), pu=In[0/g] + [g.e 0%/ +
ge(=9:/9) — 1] 1n[e<—€gc/g) —el=9:/9)9 + 0/g) — [gce(—ﬂgf/g) 4
ge'=9:/9)| In[e(=09/9) — ¢(=9:/9)9] + BU,,. Concerning the
new quantity we have introduced, G(6), the predictions
from this Letter [Eq. (7) along with Egs. (6) and (9)]
reproduce significantly well the exclusion per particle for
all k as density varies. This appears as a very useful
function in the presence of correlations, since it can be
obtained directly either from the distribution n(u) or from
experiments, providing a relevant average measurement
about the spatial configuration of particles in the system
from thermodynamics. The limiting values are G(0) = G,
and G(1) =g. Additionally, state exclusion can be
observed through G(0) in the presence of particle inter-
actions and order-disorder transitions, as will be presented
in future work. Finally, an approach to the equilibrium
statistics of many-particle systems with exclusion having
spatially correlated states for single particles has been put
forward, the statistical distribution has been obtained, a
useful exclusion spectrum function has been defined, and
the results have been applied to 2D lattices from small to
large linear particles, resulting in significant agreement for
such complex statistical systems. The formalism can be
straightforwardly applied to other particles or lattice geom-
etries and higher dimensions. In addition, the analysis
could be extended to more complex off-lattice systems in
the presence of mutual exclusion (such as hard disks and
spheres in the continuum). This work is in progress.

This Letter was supported in part by CONICET and
Universidad Nacional de San Luis, Argentina.
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