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Symmetries of both closed- and open-system dynamics imply many significant constraints. These
generally have instantiations in both classical and quantum dynamics (Noether’s theorem, for instance,
applies to both sorts of dynamics). We here provide an example of such a constraint which has no
counterpart for a classical system, that is, a uniquely quantum consequence of symmetric dynamics.
Specifically, we demonstrate the impossibility of broadcasting asymmetry (symmetry breaking) relative to
a continuous symmetry group, for bounded-size quantum systems. The no-go theorem states that if two
initially uncorrelated systems interact by symmetric dynamics and asymmetry is created at one subsystem,
then the asymmetry of the other subsystem must be reduced. We also find a quantitative relation describing
the trade-off between the subsystems. These results cannot be understood in terms of additivity of
asymmetry, because, as we show here, any faithful measure of asymmetry violates both subadditivity and
superadditivity. Rather, they must be understood as a consequence of an (intrinsically quantum)
information-disturbance principle. Our result also implies that if a bounded-size quantum reference frame
for the symmetry group, or equivalently, a bounded-size reservoir of coherence (e.g., a clock with
coherence between energy eigenstates in quantum thermodynamics) is used to implement any operation
that is not symmetric, then the quantum state of the frame or reservoir is necessarily disturbed in an
irreversible fashion, i.e., degraded.
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Introduction.—Finding the consequences of symmetries
of a closed- or open-quantum dynamics is a problem that
has a wide range of applications in physics, with Noether’s
theorem being perhaps the most prominent example. It is
notable that the consequences that physicists have focused
on, including the conservation of Noether charges and
currents, generally hold in both quantum and classical
contexts. A natural question, therefore, is whether there are
consequences of symmetric dynamics that are unique to
quantum theory.
Eugene P. Wigner pioneered the study of the conse-

quences of symmetry in quantum theory and made various
fundamental contributions to the topic. For instance, in
1952, he showed [1,2] that under the restriction of using
only Hamiltonians which conserve an observable L that is
additive across subsystems (e.g., the total angular momen-
tum in a given direction), an exact measurement of another
observableO becomes impossible unlessO commutes with
L. This fundamental no-go result, known as the Wigner-
Araki-Yanase (WAY) theorem [3,4], can equivalently be
phrased as a consequence of the restriction to Hamiltonians
which are invariant under a continuous symmetry, namely
the symmetry for which L is the generator.
In recent years, inspired by the success of entanglement

theory [5], the problem of finding the consequences of
symmetric dynamics has been further studied in the

framework of quantum resource theories [6–9]. In the
resource theory of asymmetry [10], any state which breaks
the symmetry under consideration, i.e., any state which has
some asymmetry, is treated as a resource (similar to
entangled states in entanglement theory). A particular case
of interest, which is relevant in the context of the WAY
theorem for instance, is when the symmetry under consid-
eration is the continuous set of translations generated by a
fixed observable H, i.e., fe−iHt∶t ∈ Rg (note that H need
not be the Hamiltonian, nor t the time parameter, although
the notation is meant to bring to mind this example). In this
case, a state contains asymmetry iff it contains coherence
(off-diagonal terms) with respect to the eigenspaces ofH. It
follows that the resource theory of asymmetry provides a
natural framework to study this sort of coherence, which is
known as unspeakable coherence [13,14], and which is
the notion that is relevant for quantum metrology [15]
and quantum thermodynamics [14,16,17] (as argued in
Ref. [13]).
The resource-theoretic approach to the study of sym-

metric dynamics and asymmetry properties of quantum
states has shed new light on earlier work. For instance, it
was found that the skew information, a function introduced
by Wigner and Yanase [18] as a replacement for the von
Neumann entropy in the presence of symmetry, is, in fact,
a measure of asymmetry [19–21]. Also, it was found in
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Ref. [22] that the WAY theorem can be understood as a
corollary of a deep result in quantum information theory,
known as the no-programming theorem [23–25].
Another no-go theorem about continuous symmetries

was uncovered in Ref. [12]: the no-catalysis theorem [26].
This result concerns state conversions using operations
which are covariant (symmetric) with respect to a compact
connected Lie group, and states that if the pure state
conversion ψ → ϕ is not achievable, then the catalyzed
version of this same conversion, ψ ⊗ η → ϕ ⊗ η, is also
not achievable for any choice of pure catalyst state, η, in a
finite-dimensional Hilbert space [29] (see also Ref. [30] for
related observations).
Taking the perspective of resource theories has also made

evident that existing results on symmetric dynamics, includ-
ing the no-catalysis and WAY theorems, are not uniquely
quantum. This is because it has clarified that a key
assumption in each of these no-go theorems is that the
resource state being used is not perfectly asymmetric in
the sense that the state and its translated versions (under the
symmetry transformations) are not perfectly distinguish-
able. If one makes the analogous assumption classically—
that the probability distribution over classical configurations
constituting one’s resource is not perfectly asymmetric in the
same sense—then one obtains similar no-go results.
In this Letter, we find an example of a consequence of

symmetric dynamics that is uniquely quantum, namely, a
no-broadcasting theorem for asymmetry. It asserts that if,
during a symmetric dynamics on an initially uncorrelated
pair of systems, asymmetry is created at one subsystem,
then the asymmetry of another subsystem should reduce.
We also show that this result does not hold classically.
In fact, we prove a more general result, namely, that

under symmetric dynamics, if one uses a bounded-size
quantum system in an asymmetric state (a reference frame
or coherence reservoir) as a resource to perform an
asymmetric operation (i.e., a task which is impossible
under symmetric dynamics), then one necessarily disturbs
its state irreversibly—the frame or reservoir degrades.
While it has been previously noted that quantum reference
frames can degrade when used to implement certain
asymmetric operations [31–34], this conclusion was estab-
lished only for certain target operations and considered
only for the case where the frame starts in a pure state (see,
however, Ref. [35] for more recent work).
We also find a trade-off relation for approximate broad-

casting, namely, a lower bound on the amount of disturb-
ance caused by the broadcasting of asymmetry or
coherence in the case of pure states [Eq. (6)]. This
investigation also leads us to take note of a very general
constraint on measures of asymmetry (Theorem 3).
Covariance condition.—We begin with some formalism.

Consider an arbitrary physical process with input systems
Q and S and output systems Q0 and S0, and let ΛQS→Q0S0 (or
simply Λ) be the corresponding quantum operation (i.e.,

completely positive trace-preserving linear map) from the
density operators ofQS to the density operators ofQ0S0. We
are interested in the processes satisfying the covariance
condition

∀ t∈R∶Λ ∘ ½UQðtÞ⊗ USðtÞ� ¼ ½UQ0 ðtÞ⊗ US0 ðtÞ� ∘Λ: ð1Þ

Here, for each system X ∈ fQ; S;Q0; S0g, we have defined
UXðtÞ½·�≡ e−iHXtð·ÞeiHXt, where HX is a (Hermitian)
observable defined on system X. Note that for each system
X, the map R ∋ t → UXðtÞ can be interpreted as a repre-
sentation of a group of translations. Equation (1) means that
the description of the process ΛQS→Q0S0 is independent of
which reference frame for translations one uses.
A particular case of interest is when the operator HX is

the Hamiltonian describing the closed-system dynamics of
X, so that UXðtÞ represents evolution for time t ∈ R. In this
case, the tensor product form of UQðtÞ ⊗ USðtÞ [and
UQ0 ðtÞ ⊗ US0 ðtÞ� reflects the fact that systems Q and S
(and systemsQ0 and S0) are not interacting with one another
before (and after) the process Λ, and, therefore, can be
treated as separate noninteracting subsystems. Then, the
covariance condition in Eq. (1) means that the effect of
the process Λ on the inputsQ and S does not depend on the
time at which the process acts on these systems. This
property is satisfied, for instance, by any thermal machine
that interacts a system with thermal baths and with work
reservoirs (batteries).
Asymmetry as a resource.—A simple consequence of a

process satisfying the covariance condition in Eq. (1) is that
it cannot generate asymmetry. Suppose the input state ρQS
is symmetric with respect to the symmetry represented by
t → UQðtÞ ⊗ USðtÞ, i.e.

∀ t ∈ R∶UQðtÞ ⊗ USðtÞ½ρQS� ¼ ρQS: ð2Þ

Note that this holds iff ρQS is diagonal, or incoherent
relative to the eigenspaces of HQ ⊗ IS þ IQ ⊗ HS, where
IS and IQ are the identity operators on S andQ. Then, it can
be easily seen that the covariance of process Λ implies that
incoherent states of the input systems are mapped to
incoherent states of the output systems. In this sense,
asymmetry, or coherence, is a resource that cannot be
generated under covariant operations. Obviously, the physi-
cal interpretation of this resource depends on the nature of
the symmetry. For instance, only for states that are
asymmetric with respect to time translations is a system
useful as a clock and only for states that are asymmetric
with respect to rotations is a system useful as a gyroscope.
Under the restriction to processes which satisfy the

covariance condition in Eq. (1), having access to a resource
of asymmetry allows one to perform operations that would
otherwise be impossible. For any fixed state ρQ of system
Q, let ES→S0 be the quantum operation from S to S0 induced
by the covariant operation ΛQS→Q0S0
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ES→S0 ð·Þ≡ TrQ0 ½ΛQS→Q0S0 ðρQ ⊗ ·Þ�: ð3Þ

(Note thatQ and S are assumed to be initially uncorrelated.)
It can be easily seen that if ρQ is a symmetric state, then the
map ES→S0 is covariant, i.e., satisfies ∀ t ∈ R∶E ∘ USðtÞ ¼
US0 ðtÞ ∘ E. On the other hand, using a state ρQ which
contains asymmetry, we can implement a noncovariant
operation ES→S0 .
For instance, if the process Λ satisfies time-translation

symmetry, then using an input system Q, whose state ρQ
contains asymmetry with respect to time translations (or
equivalently, contains coherence relative to the energy
eigenspaces), one can implement on S operations which
do not satisfy time-translation symmetry. Therefore, for an
agent who seeks to implement an operation at a particular
time relative to some time standard (i.e., reference clock)
but who lacks access to it, such a system can constitute a
token of the standard, a quantum clock that is synchronized
with the reference clock.
Irreversibility and degradation.—Suppose that there is a

covariant process under which ρQ → σQ0 . We say that
the state conversion ρQ → σQ0 is reversible in the
resource theory if there exists a covariant process RQ0→Q

which recovers ρQ from σQ0 , i.e., RQ0→QðσQ0 Þ ¼ ρQ;
otherwise, we say that the state conversion is irreversible
and that the asymmetry of ρQ is degraded under the state
conversion.
Asymmetry degradation theorem.—The following theo-

rem shows that using a bounded-size system Q in an
asymmetric state ρQ to implement a noncovariant operation
on system S necessarily degrades the asymmetry of ρQ.
Theorem 1(asymmetry degradation).—LetQ be a system

with a finite-dimensional Hilbert space, prepared in
state ρQ. Suppose system S, initially uncorrelated with
Q, interacts with system Q via a covariant process
ΛQS→Q0S0 . Let ES→S0 , defined in Eq. (3), be the effective
map which determines how the reduced state of output S0
depends on the state of S (for a fixed ρQ). If ES→S0 is not
covariant, then, for some states of S (including the
completely mixed state) the conversion from ρQ to σQ0

is irreversible; i.e., state ρQ cannot be recovered from state
σQ0 via a covariant process RQ0→Q (see Fig. 1).
The proof of this result will be given in the Supplemental

Material [36]. It leverages our result on no-broadcasting of
asymmetry (Proposition 2), which is a special case of

Theorem 1, and whose proof will be presented in this
Letter.
It is worth noting that, unlike the no-catalysis theorem of

[29], here we do not assume that systems Q and S0 are
uncorrelated after the recovery process RQ0→Q is applied;
rather, the result concerns the reduced state ofQ itself. Such
correlations become relevant, for instance, if we want to
repeat this process to implement ES→S0 multiple times, i.e.,
to implement E⊗n

S→S0 for arbitrary integer n. As we see in the
following, if one requires such a notion of repeatability,
which amounts to assuming lack of correlations, then the
proof of degradation becomes much simpler and can be
achieved by using arguments similar to the no-catalysis
theorem of Ref. [29] or the arguments of Ref. [30].
However, interestingly, according to Theorem 1, even if
we relax this requirement and ignore correlations, the
degradation still holds, i.e., using state ρQ to implement
a noncovariant process ES→S0 will necessarily imply that Q
undergoes a state conversion ρQ → σQ0 that is irreversible.
No-broadcasting of asymmetry or coherence.—The

special case of Theorem 1 that is the focus of this work
concerns a map that incorporates both the process ΛQS→Q0S0

as well as any recovery operationRQ0→Q on it, and which is
specialized to the case where S is trivial. We can concep-
tualize such a map as a broadcast map fromQ to the pair of
systems Q and S0. Unlike the usual discussions of broad-
casting [37], where there is a set of possible states at the
input and no restriction on the nature of the broadcast map,
we are here interested in the case where there is a single
state at the input, but the broadcast map is constrained to be
covariant.
We will say that asymmetry or coherence can be

broadcast if there is a covariant map that takes any input
state ρQ to a state σQS0 with the property that (i) the input
state ρQ is reproduced in the output Q, i.e., σQ ¼ ρQ where
σQ ≡ TrS0 ðσQS0 Þ, and (ii) the state of system S0 has non-
trivial asymmetry/coherence, i.e., ½σS0 ; HS0 � ≠ 0. We can
now state precisely the no-go result advertised in the title.
Proposition 2.—(No-broadcasting of asymmetry or

coherence) For bounded-size system Q, there does not
exist a covariant broadcast map (defined by conditions (i)
and (ii) above). In other words

ρQ → σQS0 ⇒NOT ðσQ¼ ρQ AND ½σS0 ;HS0 �≠ 0Þ: ð4Þ

We prove this proposition later by appealing to a
lemma that concerns the standard notion of broadcasting
(Lemma 4).
To see that this no-go result does not apply to classical

asymmetry, it suffices to note that a map that clones any
point distribution on a classical configuration space is
covariant relative to any symmetry and consequently such a
map achieves broadcasting of asymmetry when acted on
any distribution that breaks the symmetry of interest.

FIG. 1. If, using a covariant operation RQ0→Q, state ρQ can be
recovered from σQ0 , then the effective operation ES→S0 is
covariant, and therefore can be implemented without having
access to ρQ.
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Nonadditivity of asymmetry.—At first glance, it may
appear that the impossibility of broadcasting asymmetry
should follow from an intuitive idea, namely, that asym-
metry might be a kind of extensive quantity, so that to
create asymmetry in the system S0 one needs to reduce
the asymmetry of Q. This intuition can be formalized
using the notion of measures of asymmetry (see, e.g.,
Refs. [11,20,44,45]): a function f from states to real
numbers is called a measure of asymmetry if (i) it is
nonincreasing under covariant operations, i.e., ρA → σB
implies fðρAÞ ≥ fðσBÞ and (ii) it vanishes on symmetric
states. A measure of asymmetry is called faithful if it
vanishes only on symmetric states. The Wigner-Yanase
Skew information, fðρXÞ≡ −Trð½ ffiffiffiffiffi

ρX
p

; HX�2Þ=2, is an
example of a faithful measure of asymmetry where HX
is the generator of the symmetry (e.g., HX is the
Hamiltonian if the symmetry is time translations).
A measure of asymmetry, f, is called subadditive if for

any state σAB of a composite system AB, fðσABÞ ≤
fðσAÞ þ fðσBÞ, where σA and σB are the reduced states
of σAB on A and B, respectively. It is called superadditive if
fðσABÞ ≥ fðσAÞ þ fðσBÞ. A measure of asymmetry is
called additive if it is both subadditive and superadditive.
Suppose that there was even a single faithful super-

additive measure of asymmetry, f. In this case, ρQ → σQS0

would imply that fðρQÞ ≥ fðσQS0 Þ ≥ fðσQÞ þ fðσS0 Þ.
Since f is assumed to be faithful, if σS0 is not symmetric,
then fðσS0 Þ > 0, and we would be able to infer that
fðρQÞ > fðσQÞ and consequently that ρQ → σQ is irre-
versible, which would prove the impossibility of broad-
casting asymmetry.
However, interestingly, as we show in the Supplemental

Material [36], there is no such measure:
Theorem 3.—A faithful measure of asymmetry is neither

superadditive, nor subadditive.
It follows that the argument articulated above—wherein

one seeks to justify no-broadcasting of asymmetry from
superadditivity of asymmetry—is not sound. Indeed, the
fact that our no-broadcasting result holds in spite of
Theorem 3 makes it more surprising. As we discuss in
the Supplemental Material [36], the failure of superaddi-
tivity can be shown using the fact that it is possible to create
arbitrarily many systems in symmetry-breaking states
starting from a single system in such a state, e.g., using
an approximate cloner (see also Ref. [46] for a related result
on skew information).
It is worth noting that some faithful measures of

asymmetry, such as skew information, are additive on
product states. Therefore, the argument articulated above
does yield a proof of our no-broadcasting theorem, Eq. (4),
for the special case where σQS0 ¼ σQ ⊗ σS0 . However, to
prove the theorem in the general case, we need more
powerful tools from quantum information theory.
Approximate broadcasting.—Next, we derive a quanti-

tative version of our no-broadcasting theorem. Specifically,

we assume that there is a covariant process which trans-
forms ρQ to σQS0 , and we seek to find a quantitative limit on
the degree of success in broadcasting in terms of the
amount of asymmetry (unspeakable coherence) in the
initial state ρQ. We express our trade-off relation in terms
of (i) the degree of irreversibility of the state conversion
ρQ → σQ [where σQ ≡ TrS0 ðσQS0 Þ] and (ii) the amount of
asymmetry (unspeakable coherence) left in state σS0
[where σS0 ≡ TrQðσQS0 Þ].
To quantify the degree of irreversibility in a state

conversion ρQ → σQ, we consider the minimum achievable
infidelity in recovering the initial state ρQ from the final
state σQ

irrevðρQ; σQÞ≡ 1 −max
R

Fid2½ρQ;RðσQÞ�; ð5Þ

where the maximization is over all covariant quantum
operations. Here, Fidðτ1; τ2Þ≡ k ffiffiffiffi

τ1
p ffiffiffiffi

τ2
p k1 is the

(Uhlmann) fidelity [47–49]. This definition implies that
irrevðρQ; σQÞ is between 0 and 1, and the state conversion
ρQ → σQ is reversible iff irrevðρQ; σQÞ ¼ 0.
To quantify the asymmetry left in state σS0 , we consider

a measure of asymmetry defined in terms of the fidelity.
For any t ∈ R, define ftðρÞ≡ 1 − Fidðρ; e−iHtρeiHtÞ ¼
1 − k ffiffiffi

ρ
p

e−iHt ffiffiffi
ρ

p k1. As we show in the Supplemental
Material [36], ft is a measure of asymmetry for any
t ∈ R, and it takes values in [0, 1]. ftðρÞ quantifies how
distinguishable ρ is from e−iHtρeiHt.
The trade-off relationweprove, unlikeour no-broadcasting

theorem, is limited to the case where the initial state is pure,
a fact which we denote by writing ρQ ¼ ψQ. Specifically, if
ψQ → σQS0 , then

∀ t ∈ R∶ ftðσS0 Þ ≤ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
irrevðψQ; σQÞ

p

1 − ftðψQÞ
: ð6Þ

This trade-off relation states that for any t ∈ R, the
asymmetry of σS0 , as quantified by ft, is upper bounded by
a multiple of the degree of irreversibility of the state
conversion ψQ → σQ, as quantified by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
irrevðψQ; σQÞ

p
.

Note that as ftðψQÞ increases, the derived lower bound on
irrevðψQ; σQÞ decreases (see also Ref. [35] for related
work).
The proof is given in the Supplemental Material [36].

There, we also demonstrate that this trade-off relation
immediately implies our no-broadcasting theorem, Eq. (4),
for the special case where the state ρQ is pure.
Finally, we present the proof of our no-broadcasting

theorem for asymmetry in the general case, where ρQ may
be mixed and σQS0 may have correlations betweenQ and S0.
Proof of no-broadcasting of asymmetry or coherence.—

To prove Proposition 2, we make use of the following
lemma concerning broadcasting of an unknown state.
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Lemma 4.—(No-broadcasting of information encoded
quantumly) Let fρðxÞQ gx be an arbitrary set of states of
system Q. Suppose that under a quantum operation EQ→QS0

(the putative broadcastingmap), the state ρðxÞQ is converted to

the state σðxÞQS0 of systems Q and S0. Assume that under this
map, the state of systemQ is preserved at the output, so that

the reduced state on outputQ, defined as σðxÞQ ≡ TrS0 ðσðxÞQS0 Þ,
satisfies σðxÞQ ¼ ρðxÞQ for all states in the set fρðxÞQ gx. In this
case, the reduced state on the output S0, defined as

σðxÞS0 ≡ TrQðσðxÞQS0 Þ, can be obtained from the input state

ρðxÞQ by performing a projectivemeasurement with projectors

fΠðμÞ
Q gμ that commute with all states in the set fρðxÞQ gx,

followed by a state preparation which depends only on the
outcome of this measurement. That is, the reduced state of S0

is constrained to be of the form σðxÞS0 ¼ P
μp

ðxÞ
μ σðμÞS0 , where

pðxÞ
μ ¼ TrðρðxÞQ ΠðμÞ

Q Þ is the probability of obtaining the μ

outcome, and where fσðμÞS0 gμ is an arbitrary set of states.
This is proven in the Supplemental Material [36] using a

result of Koashi and Imoto [50]. Note that one can
conceptualize this result not only as a no-go for broad-
casting of quantumly encoded information, but also as a
type of information-disturbance principle. Specifically, it
asserts that if the channel is disturbance free on Q, then the
only information about the identity of the unknown state of
Q that can be obtained from S0 is information that is
encoded classically in Q. In the case where the set of states
is noncommuting, this implies a nontrivial and intrinsically
quantum constraint on information gain. (See the
Supplemental Material [36] for further discussion).
Next, we leverage this lemma to prove Proposition 2. We

assume that the asymmetry at the input Q is preserved in
the outputQ and show that this implies that the state of S0 is
symmetric. We assume, therefore, that there exists a
covariant operation that achieves the conversion ρQ →
σQS0 such that σQ ¼ ρQ. We now note that, by virtue of
its covariance, this operation also achieves the conversion
UQðtÞ½ρQ� → UQðtÞ ⊗ US0 ðtÞ½σQS0 � for all t ∈ R. Given the
assumption that σQ ¼ ρQ, the marginal on Q of UQðtÞ ⊗
US0 ðtÞ½σQS0 � is UQðtÞ½ρQ�, and so an operation that converts
an unknown state drawn from the set fUQðtÞ½ρQ�∶t ∈ Rg
into the corresponding state in the set fUQðtÞ ⊗
US0 ðtÞ½σQS0 �∶t ∈ Rg is precisely a broadcasting map sat-
isfying the assumption of Lemma 4, where t plays the role
of x.
We then infer from Lemma 4 that under such a broad-

casting map, the state of the output S0 must be prepared
based on the outcome μ of a projective measurement

fΠðμÞ
Q gμ on the input Q, where fΠðμÞ

Q gμ is a complete set
of orthogonal projectors that commute with all states
in fUQðtÞ½ρQ�∶t ∈ Rg.

The next step of the argument is where the restriction of
scope to continuous symmetries occurs. For continuous
symmetries, we can consider the derivative with respect to
the parameter t.DefiningρðtÞQ ≡ UQðtÞ½ρQ� ¼ e−iHQtρQeiHQt,
we have

i
d
dt

TrðρðtÞQ ΠðμÞ
Q Þ ¼ Trð½ΠðμÞ

Q ;HQ�ρðtÞQ Þ ¼ TrðHQ½ρðtÞQ ;ΠðμÞ
Q �Þ;

where the first equality is Ehrenfest’s theorem, and the
second equality follows from the cyclic property of the
trace.Recalling that ½ρðtÞQ ;ΠðμÞ

Q � ¼ 0 for all t ∈ R and for all μ,

it follows that TrðΠðμÞ
Q ρðtÞQ Þ is independent of t. Because the

probability distribution over μ induced by ρðtÞQ is independent
of t, the state of S0, which, as established above, can only
depend on ρðtÞQ via the mediary of μ, is also independent of t.
This can be expressed as e−iHS0 tσS0eiHS0 t ¼ σS0 , or equiv-
alently, as ½σS0 ; HS0 � ¼ 0, which concludes the proof.
Conclusion.—In this work, we have demonstrated a

uniquely quantum constraint on the manipulation of asym-
metry (equivalently, unspeakable coherence), namely, that
it cannot be broadcast. Note that a similar result is found
independently in Ref. [51], which is published concurrently
with this letter. We have also found a trade-off relation
which quantifies the amount of irreversibility in a covariant
state conversion that achieves approximate broadcasting of
asymmetry or coherence. Furthermore, we showed that for
bounded-size systems, asymmetry necessarily degrades
with use.
It is worth noting that the constraints we have described

here are generic to symmetries described by connected Lie
groups. This is because any symmetry transformation in
such groups is an element of a one-parameter subgroup in
the form of e−iLx for a generator L, and x ∈ R, and
covariance with respect to the original group implies
covariance with respect to this subgroup.
The results are also specific to continuous symmetries in

that they generally do not hold for discrete symmetries.
This parallels the situation with the celebrated WAY
theorem [1–4] and the no-catalysis theorem of Ref. [29].
A broader question suggested by our work is: for

which quantum resources theories is it impossible to
broadcast a resourceful state using the free operations
defined by that resource theory? Reference [52] can be
seen as providing another example in addition to the one
described here.
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