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We revisit a family of integrals that delude intuition and that recently appeared in mathematical literature
in connection with computer algebra package verification. We show that the remarkable properties
displayed by these integrals become transparent when formulated in the language of random walks. In turn,
the random walk view naturally leads to a plethora of nontrivial generalizations that are worked out.
Related complex identities are also derived, without the need of explicit calculation. The crux of our
treatment lies in a causality argument where a message that travels at finite speed signals the existence of a
boundary.
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Introduction.—While intuition and experimentation are
both crucial in mathematical works, inductive thinking may
be spectacularly misguided in some cases. A celebrated
illustration of the dangers of pattern extrapolation is
provided by the question of circle division by chords
[1]: Consider n points on the circumference of a circle
and join every pair of points by a chord such that at any
point inside the circle at most two chords can intersect.
How many regions Sn does the circle get divided into? By
simple drawing, one sees that S1 ¼ 1 (by convention),
S2 ¼ 2, S3 ¼ 4, S4 ¼ 8, S5 ¼ 16. At this point one may
naively guess that for general n, Sn ¼ 2n−1. That is wrong.
It turns out that S6 ¼ 31. Indeed, the correct answer is
Sn ¼ ðn

4
Þ þ ðn

2
Þ þ 1, which happens to coincide with the

sequence 2n−1 up to n ¼ 5, but starts differing from it for
n ¼ 6 onwards.
Our interest goes here to a lesser known such problem,

and the surprising behavior of integrals of the type

IN ¼
Z

∞

−∞

YN
n¼1

sinc

�
k

2n − 1

�
dk; ð1Þ

JN ¼
Z

∞

−∞
cosðkÞ

YN
n¼1

sinc

�
k

2n − 1

�
dk; ð2Þ

where sincðxÞ ¼ sinðxÞ=x denotes the cardinal sine func-
tion [2,3]. We do not dwell on the prevalence of the sinc
function in mathematics (geometry, spectral analysis,…)
and physics (signal processing, optics,…), see, e.g., [5]. It
was shown that I1 ¼ I2 ¼ I3 ¼ I4 ¼ I5 ¼ I6 ¼ I7 ¼ π,
whereas IN < π, for all N ≥ 8 [6]. In the latter situation,
the difference π − IN is minute, less than 10−10 for N ¼ 8,
which was first realized numerically, and attributed to a bug
in the software [6]. A related phenomenon was observed for
the J family: JN ¼ π=2 for N ≤ 56, but JN < π=2 for all

N ≥ 57 [7]. A theorem shown in [6] rationalizes this matter
of fact: it states that provided

P
N
n¼2 janj < ja1j,

1

2π

Z
∞

−∞

YN
n¼1

sincðankÞdk ¼ 1

2ja1j
: ð3Þ

Without loss of generality, one can choose the coefficients
an to be positive real quantities, and a1 can then be taken as
the largest of them. Given that

P
7
n¼2 1=ð2n − 1Þ < 1 whileP

8
n¼2 1=ð2n − 1Þ > 1, this explains the behavior of the I

family, for which a1 ¼ 1. The J family falls under the same
argument [8]. When the equality in (3) breaks, the explicit
integrals could be computed. The corresponding values,
related to the volume of hypercubes, cut by parallel
hyperplanes, is immaterial for our purposes [6]. Our goal
is rather to provide a transparent understanding of the
statement (3). To this end, wewill show that the language of
random walks, and physical intuition not only provide a
natural framework towards understanding this change of
behavior, but also lead to relevant and interesting gener-
alizations, thereby offering an explicit and effort-free
calculation of complex multidimensional integrals [9]. At
the heart of our approach lies a causality argument,
formulated in terms of a message that signals the existence
of a boundary.
Random walkers in a finite or infinite “world”.—We

start by considering a random walk making N steps on a
line, xN ¼ P

N
n¼1 ηn starting at x0 ¼ 0, where ηn is uni-

formly distributed in ½−an; an� and the ηn’s are independent
random variables. The probability density function (PDF)
of each ηn is thus a rectangle function, with simple chara-
cteristic function (Fourier-Transform) heikηni ¼ sincðankÞ.
The characteristic function of xN , sum of independent
increments, thus reads

heikxN i ¼
YN
n¼1

heikηni ¼
YN
n¼1

sincðankÞ; ð4Þ
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which allows us to write its PDF as the inverse Fourier
transform

pNðxNÞ ¼
Z

∞

−∞

dk
2π

YN
n¼1

sincðankÞe−ikxN ð5Þ

⇒
1

2π

Z
∞

−∞

YN
n¼1

sinc ðankÞdk ¼ pNð0Þ: ð6Þ

The IN integral under scrutiny is thus isomorphic to pNð0Þ,
i.e., the probability density of the randomwalk to be back at
the origin, while starting from the origin (x0 ¼ 0).
To proceed further, it is useful to reinterpret pNð0Þ as

follows. Consider a large (infinite actually) number of
independent random walkers, all starting at x0 ¼ 0. Then
pNð0Þ is just the fraction of walkers at x ¼ 0 after N steps,
i.e., the density of this gas of independent particles at the
origin after N steps. After step 1, their density is uniform in
½−a1; a1� so that p1ð0Þ ¼ 1=ð2a1Þ (incidentally meaning
that I1 ¼ π). A second step is then made, with amplitude
a2 < a1. Because the jump a2 is finite and a2 < a1, it is
clear that all the walkers that were, after step 1, in the range
½−ða1 − a2Þ; a1 − a2� will not leave their step-1 domain
½−a1; a1� following the second step. Only walkers near the
two edges, e.g., those in the range ½a1 − a2; a1� or
½−a1;−a1 þ a2� may leave the step-1 domain after the
second jump. Hence, the walkers in ½−ða1 − a2Þ; a1 − a2�
do not “see” the edges of the step-1 domain—for them, it is
as if the system was infinite with uniform density 1=ð2a1Þ.
In such an “infinite world,” the gain and loss contribu-
tion balancing those walkers leaving the origin and those
reaching it after the second step do cancel: p1ð0Þ ¼ p2ð0Þ.
This is illustrated in Fig. 1 where one can appreciate that the
flatness of the density near the origin is preserved, although
in a range that diminishes with the number N of steps
performed. The argument does not depend on the left-right
symmetry of the random steps [11]. In other words, we
invoke causality and the boundedness of the steps to state
that the only possibility for pNð0Þ to be affected by a new
step is when walkers having started from the edges at �a1
do reach the origin. Those “messengers” carry the infor-
mation that the “world” is not infinite, which in turn
impinges on pNð0Þ. If

P
N
n¼2 an < a1, the distance traveled

by the messengers is not sufficient to reach the origin, and
pNð0Þ ¼ 1=2a1 is N independent. We therefore recover
statement (3) [12]. Besides, while our random walk argu-
ment directly applies to IN integrals, it also is relevant for
the JN type, as explained in the Supplemental Material
[13]. It is, nevertheless, necessary here to supplement the
analysis with a new property, the left-right symmetry of the
random steps. The key feature becomes the preservation of
the edge density pNða1Þ under performing random steps,
while it pertained to the preservation of pNð0Þ when
treating IN integrals [13].

The random walk reformulation provides us with an
immediate generalization. Consider, for instance, the case
where the first step is of Pearson’s type [14] (i.e., of a fixed
amplitude a1, ending at �a1), while the subsequent steps
are again uniform as before with ηn ∈ ½−an; an� for n ≥ 2,
then pNð0Þ ¼ 0 for

P
N
n¼2 an < a1. In this case, the

characteristic function after N steps is given by
heikxni ¼ cosðka1Þ

Q
N
n¼2 sincðankÞ. Then our causality

argument tells us that pNð0Þ ¼ 0 for
P

N
n¼2 an < a1.

Evidently, the origin remains void of walkers, until the
messengers arrive at x ¼ 0. Provided that

P
N
n¼2 an < a1,

this implies [15]:

Z
∞

−∞
cosða1kÞ

YN
n¼2

sincðankÞdk ¼ 0: ð7Þ

This identity can be recovered by invoking a different
randomwalk sharing with the previous one steps 2; 3;…; n,
but not the first step [13].
One-dimensional generalizations.—A natural extension

of the above results consists in considering that all steps
except the first are arbitrary, but of finite range. The
corresponding PDFs are therefore of finite support. The
argument now involves the associated characteristic func-
tions, that we denote F̂ nðkÞ. These F̂ nðkÞ are defined as the
Fourier transforms of PDFs F nðxÞ that have a finite
support, taken for convenience to be unity. ProvidedP

N
n¼2 an < a1, one can write

1

2π

Z
∞

−∞
sincða1kÞ

YN
n¼2

F̂ nðankÞdk ¼ 1

2a1
: ð8Þ

Under the same condition and taking once more advantage
of causality, we obtain [15]
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FIG. 1. Probability density function of the random walk xN
after N ¼ 1, N ¼ 2, and N ¼ 3 steps, as indicated. Here, the
amplitudes of the steps are a1 ¼ 1, a2 ¼ 1=3, a3 ¼ 1=5, in line
with the definition of I integrals in Eq. (1). The density at the
origin is invariant (equal to 1=2), which means that
I1 ¼ I2 ¼ I3 ¼ π. For, respectively, N ¼ 1, 2 and 3, the exten-
sion of the flat region near the origin is 2a1, 2ða1 − a2Þ,
2ða1 − a2 − a3Þ, due to the progression of the walkers arriving
from the boundaries (so-called “messengers” in the main text).
Note that the density at x ¼ 1 is preserved as well, and half that at
the origin (leaving aside the N ¼ 1 case).
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Z
∞

−∞
cosða1kÞ

YN
n¼2

F̂ nðankÞdk ¼ 0; ð9Þ

where again all amplitudes an are considered positive.
Some particular cases have been addressed in earlier studies
[6,10], but we stress that many more are subsumed under
Eqs. (8) and (9). The task amounts to establishing a catalog
of eligible F̂ nðkÞ. It is not our purpose here, and we simply
mention some emblematic such functions: the Bessel
functions J0ðkÞ, J1ðkÞ=k and more generally JνðkÞ=kν
for ν > −1=2, ð1 − cos kÞ=k2, ðk − sin kÞ=k3 and a number
of hypergeometric functions. To generate candidates, ad-
vantage can be taken from the study of hyperuniform
systems, that feature potentials of bounded Fourier trans-
form; see, e.g., [16].
Beyond dimension one.—A second natural extension of

previous considerations consists in considering d-dimen-
sional random walks, with d > 1. A straightforward cal-
culation shows that the counterparts of the one dimensional
sincðkaÞ and cosðkaÞ functions are given as follows. For a
one-step walk with jump η, chosen respectively (i) uni-
formly within a d-dimensional sphere of radius a and
(ii) uniformly on the surface of the same sphere (Pearson’s
type jump), the associated characteristic functions of the
jumps are

heik·ηi ¼
8<
:

ð2πÞd=2
Vd

Jd=2ðkaÞ
ðkaÞd=2 ðiÞ

ð2πÞd=2
Sd

Jd=2−1ðkaÞ
ðkaÞd=2−1 ðiiÞ

ð10Þ

where Vd ¼ πd=2=Γðd=2þ 1Þ and Sd ¼ dVd are, respec-
tively, the volume and surface of a d-dimensional unit
sphere. For d ¼ 1, using J1=2ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffi
2=πz

p
sinðzÞ and

J−1=2ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2=πz

p
cosðzÞ, one recovers, respectively,

sincðkaÞ and cosðkaÞ. A new catalog of functions

F̂ ðdÞ
n ðkÞ can then be established, such that their d-dimen-

sional Fourier transform is of bounded support (several
interesting candidates can also be found in [16], a rather
generic one being the hypergeometric function

1F2f½ðdþmÞ=2�; ðd=2Þ; 1þ ½ðmþ dÞ=2�;−k2g, where m
is some arbitrary parameter). Knowing the eligible building

blocks F̂ ðdÞ
n ðkÞ, one can write upon setting k ¼ jkj

Z
Rd

Jd=2ða1kÞ
kd=2

YN
n¼2

F̂ ðdÞ
n ðankÞddk ¼

�
2π

a1

�
d=2

; ð11Þ

provided
P

N
n¼2 an < a1.

A nontrivial identity follows from Eq. (11) by consid-
ering a special case. Choose the nth step uniformly from a
dn-dimensional sphere of radius bn (for n ≥ 1).

Consequently, using F̂ ðdnÞ
n ðankÞ ∝ Jdn=2ðbnkÞ=kdn=2 in

Eq. (11), we get upon setting dn ¼ 2μn the following
identity

Z
∞

0

dkkμ1−1Jμ1ðb1kÞ
YN
j¼2

JμjðbjkÞ
kμj

¼ 2
μ1−1−

P
N
j¼2

μj

bμ11

Γðμ1ÞQ
N
j¼2 Γð1þ μjÞ

YN
j¼2

b
μj
j ð12Þ

provided
P

N
j¼2 bj < b1 [17]. Not surprisingly, with a

Pearson first step that depopulates the origin and forP
N
n¼2 an < a1:

Z
Rd

Jd=2−1ða1kÞ
kd=2−1

YN
n¼2

F̂ ðdÞ
n ðankÞddk ¼ 0: ð13Þ

Mixing dimensions, we note that the steps n ≥ 2 can be of
any type provided the associated Fourier transform is

bounded: in (11) and (13), the building blocks F̂ ðdÞ
n ðkÞ

can be some F̂ ðd0Þ
n ðkÞ, borrowed from a lower-dimensional

catalog with d0 < d. In doing so, we generate a wealth of
complex integrals. Some of the simplest are known [18,19],
for instance

Z
∞

0

kν−μþ1Jνða1kÞJμða2kÞ cosða3kÞsincða4kÞ ¼ 0 ð14Þ

for a2 þ a3 þ a4 < a1, which follows from (13) with

ν ¼ d=2 − 1, F̂ ðdÞ
n¼2ðkÞ ¼ JμðkÞ=kμ and that appears under

section 6.711.2 in [18], when a4 ¼ 0 [20]. Yet, infinitely
many other identities that are subsumed in (11) or (13) are
complex and seemingly unknown.
It is worth stressing that in some cases the random walk

reformulation may not immediately lead to an explicit
result; however it may nevertheless offer a direct means of
calculation. As an example, we find the following non-
trivial identity

Z
R2

dkxdky cosðkxÞ cosðkyÞJ0ðbkÞJ0ðakÞ

¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðaþ bÞ2 − 2�½2 − ða − bÞ2�

p ; ð15Þ

with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. The above result holds for

ffiffiffi
2

p
∈ ½jb −

aj; bþ a� (and, say, a > 0, b > 0); otherwise, the integral
vanishes. The proof is provided in the Supplemental
Material [13]. We outline here the main steps. Consider
a 2D random walk, starting at the origin 0 and making four
successive steps: a first jump �1 along the x direction, a
second jump�1 along the y direction, then a Pearson jump
on the circle of radius b with a final fourth step distributed
as the third, but with a radius a and say a < b, see Fig. 2.
Then the lhs of Eq. (15), using the results from line (ii) of
Eq. (10) (d ¼ 1 for the first two steps and d ¼ 2 for the last
two steps), is precisely 4π2p4ð0Þ, where p4ð0Þ denotes the
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density at the origin 0 after four steps. This density can, in
turn, be computed by elementary means, see the
Supplementary Material [13], leading to the rhs of
Eq. (15). If

ffiffiffi
2

p
∉ ½b − a; bþ a�, the random walk which

is at a distance
ffiffiffi
2

p
from the origin after step 2 cannot be

back to be origin after step four, exploring an annulus with
inner radius b − a and outer radius bþ a (see Fig. 2).
Equally tractable is the case where the fourth step is not
Pearson but uniform within the disc of radius a [for the
fourth step we use (i) of Eq. (10) with d ¼ 2], leading to

Z
R2

dkxdky cosðkxÞ cosðkyÞJ0ðbkÞ
J1ðakÞ

k

¼ 2

a
arccos

�
2þ b2 − a2

2
ffiffiffi
2

p
b

�
: ð16Þ

The lhs can be made more complex without sacrificing the
possibility of an explicit calculation of p4ð0Þ.
When sums and integrals coincide.—We now turn to a

distinct problem, that bears a similarity with the previous
ones, after suitable reformulation. There was some interest
recently in identities of the form [21,22]

Z
∞

−∞

YN
n¼1

sincðankÞdk ¼
X∞
k¼−∞

YN
n¼1

sincðankÞ ð17Þ

which hold provided
P

N
n¼1 an < 2π [23]. The latter

condition can be compared to that applying to (3),P
N
n¼2 an < a1, that can be rewritten as

P
N
n¼1 an < 2a1.

The difference between the two criteria, where the same
quantity is bounded either by 2π or by 2a1, indicates that
the identity (17) cannot be reduced to any of the previous
arguments. Yet, the random walk reformulation also is
insightful to show, and understand, relation (17). The idea
is to compare two populations of random walkers, one on

the infinite line (case F, for “flat”), and the other on the unit
circle (case C). Both populations, starting from the origin,
undergo the same random jumps. Provided that the front
runners (the random walkers having traveled the greater
distance from the origin) did not travel round the
circle in case C, moving on a flat line or on a finite circle
is immaterial. The corresponding condition readsP

N
n¼1 an < 2π. When this inequality is fulfilled, the

probability density of the walkers at the origin is thus
the same in cases C and F. Expressing the PDF as either a
Fourier series for case C or a Fourier transform for case F,
we then get

Z
∞

−∞

YN
n¼1

F̂ nðankÞdk ¼
X∞
k¼−∞

YN
n¼1

F̂ nðankÞ; ð18Þ

which includes (17) and many other cognate relations [24].
As above, the F̂ n refer to arbitrary functions, the Fourier
transform of which are bounded with unit support. Loosely
speaking, Eq. (18) can thus be viewed as the “flat world
equation.”
Conclusion and discussion.—We have proposed a ran-

dom walk interpretation of a curious phenomenon, exhib-
ited by integrals of types (1) and (2). The underlying
physical image is that of an ensemble of random walkers
starting from the origin, and performing a first step so as to
populate uniformly the interval ½−a1; a1�. The walkers then
undergo a series of N smaller steps with respective
amplitudes an. If the maximal span of these steps cannot
lead walkers from the edge (i.e., at x ¼ �a1) back to the
origin x ¼ 0, then the walkers near x ¼ 0 have a fixed
density [given by the lhs in Eq. (3)], specified by the first
step and thus equal to 1=ð2a1Þ. In pictorial terms, the
walkers near the origin cannot know they live in a finite
world, unless the messengers starting from the confines at
�a1 reach them. This may never happen if

P∞
n¼2 an < a1,

in which case an equality like (3) will hold at all orders N
[25]. It is interesting to note here that the model of random
walks with shrinking steps directly applies to physico-
chemical problems such as line broadening for single
molecule spectroscopy in disordered media [26,27]. The
random walk reformulation naturally leads to nontrivial
extensions, since it is irrelevant that the steps n ¼ 2, 3, etc.,
be uniformly distributed, provided the first one (labeled
n ¼ 1) has the desired property [uniform to lead to (3) or
Pearson to lead to (7)] and that the subsequent steps
(n ¼ 1; 2;…) are bounded. Generalizations in higher
dimensions appear of particular interest, and provide
calculation-free results that would otherwise require con-
siderable effort and ingenuity.
While the mathematical problem at stake deceives

intuition, we have shown that physical arguments may
take over. Physics’ insight takes the form of a causality rule,
where a message travels from a boundary. Applied to
random walkers undergoing jumps of bounded amplitude,

b

2a

FIG. 2. Sketch of the random walk geometry considered. After
step 2, the walker is on one of four corners of a square, chosen to
be (1,1) on the graph. The third step is uniform on the large circle
with radius b, while the fourth is uniform on a smaller circle with
radius a. The walker can then end up, nonuniformly, at any point
within the shaded annulus of inner radius b − a and outer radius
bþ a. Since the origin lies in that region, the integral considered
in nonvanishing.
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this yields a clear account for the change of behavior of a
class of multidimensional integrals [of the types (11) and
(13)]. The random walk picture also allows for simple
calculation of complex multidimensional integrals [such as
in (15) and (16)]. Besides, related probabilistic ideas can be
generalized to compute other classes of integrals that are
otherwise hard to obtain. Assume for instance that a 1D
walker starts with a Pearson jump of amplitude�a1, so that
hjx1ji ¼ a1. The boundedness of subsequent steps and the
causality rule mean that hjxN ji remain at a1, as long asP

N
n¼2 an ≤ a1, i.e., as long as the message starting from

x ¼ a1 does not hit x ¼ 0. This implies

Z
∞

0

1

k2

�
1 − cos ðka1Þ

YN
n¼2

F̂ nðankÞ
�
dk ¼ π

2
a1 ð19Þ

after a straightforward reexpression of hjxN ji presented in
[13], Sec. III. It thus appears that the curious phenomenon
at work for Borwein integrals is more general and applies to
a much broader class of complex integrals and dis-
crete sums.
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