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We demonstrate theoretically that the single-photon purity of photons emitted from a quantum dot
exciton prepared by phonon-assisted off-resonant excitation can be significantly higher in a wide range of
parameters than that obtained by resonant preparation for otherwise identical conditions. Despite the off-
resonant excitation, the brightness stays on a high level. These surprising findings exploit the fact that the
phonon-assisted preparation is a two-step process where phonons first lead to a relaxation between laser-
dressed states while high exciton occupations are reached only with a delay to the laser pulse maximum by
adiabatically undressing the dot states. Due to this delay, possible subsequent processes, in particular
multiphoton excitations, appear at a time when the laser pulse is almost gone. The resulting suppression of
reexcitation processes increases the single-photon purity. Due to the spectral separation of the signal
photons from the laser frequencies this enables the emission of high quality single photons not disturbed by
a laser background while taking advantage of the robustness of the phonon assisted scheme.
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On-demand single-photon sources continue to gain
attention as key building blocks in quantum technological
applications, ranging from novel metrology over quantum
communication to quantum computing. Semiconductor
quantum dots (QDs) have proven to be suitable single-
photon emitters [1–8] that, due to their high compatibility
with existing semiconductor technology, are promising
candidates for device applications. In contrast to atomic
systems, these nanoscale structures are prone to the
influence of the surrounding solid state crystal matrix.
Longitudinal acoustic (LA) phonons are the main source
of decoherence of excitons in semiconductor QDs even at
cryogenic temperatures of a few kelvin [9–13]. Nevertheless,
phonon-assisted off-resonant QD excitations have been
shown to provide a robust alternative to resonant exciton
preparation schemes [14–18]. In this Letter, we demonstrate
theoretically that, quite unexpectedly, the coupling to LA
phonons combined with off-resonant driving can be
extremely beneficial for a single-photon source based on
a QD-cavity system, allowing for the generation of high-
quality single-photons that are easily detectable due to their
spectral separation from the laser pulses used for the
excitation of the QD.
Placing a QD in a cavity strongly enhances the photon

emission by enlarging the effective dot-cavity coupling and
by setting a preferable emission axis. When exciting the
QD exciton resonantly, the frequencies of the excitation and
the signal are identical—separating the two is a formidable
experimental challenge. In fact, spectral separability is
achievable, e.g., by wetting layer excitation or by exciting
the biexcitonvia the two-photon resonance and subsequently

exploiting the biexciton-exciton cascade [8,19]. But while
the former introduces a time jitter that reduces the on-demand
character of the photon source, the latter is sensitive to small
fluctuations of excitation parameters such as the laser energy
and the pulse area. Both problems are overcome by an off-
resonant excitation of the quantum dot, which is thus
extremely advantageous. Indeed, it has recently been shown
that the robustness of off-resonant excitation schemes paves
the way to excite two spatially separated QDs with different
transition energies simultaneously with the same laser pulse,
which is a milestone towards the scalability of complex
quantum networks [20].
The quality of a QD-cavity system as an on-demand

single-photon source is typically quantified by several key
figures of merit, such as the single-photon purity P and the
brightness B. While the former measures whether indeed a
single photon is emitted by the source, the latter character-
izes its total photon yield [5]. When P ¼ B ¼ 1, the source
emits a single photon with a probability of unity at every
excitation pulse via the cavity. The single-photon purity
(SPP) can be extracted from a Hanbury Brown–Twiss
coincidence experiment [3,7,8,21–24], which gives a con-
ditional probability to detect a second photon when a first
one has already been detected. Suppressing this probability
is possible, e.g., by parametric down-conversion, which
enhances the SPP, albeit at the cost of a severely reduced
brightness of the photon source [25]. Maximizing both SPP
and brightness is of utmost importance to create efficient
single-photon emitters.
Simultaneously large P and B in a QD-cavity system can

be achieved by exciting the dot resonantly by ultrashort
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laser pulses [3,4,7]. However, shortening the pulse duration
is equivalent to widening it spectrally. The detrimental
influence of exciting higher-lying states, especially the
biexciton state of the QD by short pulses is discussed in
Ref. [26]. In view of the various advantages of phonon-
assisted off-resonant excitations listed above, the question
arises how photonic characteristics such as SPP and bright-
ness perform under off-resonant schemes. In short, we want
to explore whether all of the advantages of phonon-assisted
off-resonant schemes come at the cost of severely reduced
photonic properties.
It is expected that driving a QD off-resonantly is much

less efficient. For longer and stronger pulses the resulting
quantum state of a QD-cavity system contains an admixture
of multiphoton states, which reduces the SPP. Phonon-
induced dephasing is expected to degrade the quantum state
even further. But paradoxically quite the opposite can take
place: a combination of off-resonant driving with the
phonon-induced relaxation between laser-dressed QD
states leads eventually to high exciton occupations in a
subsequent adiabatic undressing process [27]. In this Letter,
we demonstrate that the delay of the exciton creation
caused by the undressing suppresses the probability for
multiphoton generation. Therefore, comparing off-resonant
and resonant excitation with otherwise same conditions
may, quite unexpectedly, yield enhanced SPPs in the off-
resonant case. The best values predicted in this Letter are
even comparable to the best values obtained so far within
resonant schemes addressing the exciton.
We model the QD-cavity system as a laser-driven two-

level system with a ground state jGi and an excited state
jXi, HDL¼−ℏΔωLXjXihXj−ðℏ=2ÞfðtÞðjXihGjþjGihXjÞ,
coupled to a single-mode microcavity (cf., Fig. 1), HC ¼
ℏΔωCLa†aþ ℏgða†jGihXj þ ajXihGjÞ, which is on reso-
nance with the QD exciton. Here, ΔωLX and ΔωCL are the
laser-exciton and cavity-laser detuning, respectively, and a
is the photon annihilation operator in the cavity, which is
coupled to the dot by the coupling constant g. A train of
Gaussian pulses is assumed represented by the laser envelope
function fðtÞ. The excitation can leave the system either via
radiative decay or cavity losses modeled by Lindblad rates γ

and κ, respectively. Finally, the exciton is coupled to a
continuum of LA phonons in a pure-dephasing manner [28],
HPh¼ℏ

P
qωqb

†
qbqþℏ

P
qðγXqb†qþγX�q bqÞjXihXj. bq anni-

hilates a phonon in the mode q coupled to the dot by the
coupling constant γXq . Full details of the model and of our
numerical approach are given in the Supplemental Material
[29]. It is worthwhile to note that we use path-integral
methods for our simulations that allow us to perform all
simulations without approximation to the model [29,36–38].
For the calculations, standard GaAs parameters are used

[39] for a QD of 6 nm diameter (for details on the phonon
coupling consider the Supplemental Material [29]). If not
stated otherwise, the excitation pulse full width at half
maximum is set to 7 ps, the cavity mode is resonant with
the QD transition, the dot-cavity coupling is ℏg ¼ 50 μeV,
the radiative decay rate is ℏγ ¼ 20 μeV, and the cavity loss
rate is ℏκ ¼ 50 μeV. This corresponds to a Purcell factor of
FP ¼ g2=ðγκÞ ¼ 2.5. The initial phonon distribution is
assumed to be thermal with a temperature of T ¼ 4.2 K.
The main target quantities of interest in this Letter, the

SPP P and the brightness B, are obtained from path-
integral simulations of the two-time photonic correlation
function Gð2Þðt; τÞ ¼ ha†ðtÞa†ðtþ τÞaðtþ τÞaðtÞi and the
time dependent photon occupation ha†aiðtÞ, respectively.
In order to express the SPP in terms of Gð2Þðt; τÞ one first
needs to take the average over the first time argument t,
i.e., Gð2ÞðτÞ ¼ R

∞
−∞ dtGð2Þðt; τÞ, which yields a function

with the delay time τ of the coincidence measurement as its
single argument. The probability p of detecting a second
photon during the same excitation pulse after a first one has
already been emitted thus can be obtained by

p ¼
R TPulse=2
−TPulse=2

dτGð2ÞðτÞ
R 3TPulse=2
TPulse=2

dτGð2ÞðτÞ
; ð1Þ

where TPulse is the separation of the pulses in the pulse train.
The SPP is then defined as P ¼ 1 − p. Note that −∞ <
P ≤ 1, where the lack of a lower bound is due to the
possibility of bunching instead of antibunching.
In this Letter, the brightness of the source is modeled as

the integrated leakage of the average photon number during
the duration of one pulse, i.e., B ¼ κ

R TPulse=2
−TPulse=2

dtha†aiðtÞ.
Due to the definition, this quantity formally ranges in 0 ≤
B < ∞ without an upper bound since in principal infinitely
many photons can exist in a single electromagnetic field
mode.
In Fig. 2(a) the brightness simulated without phonons is

shown as a function of the detuning ΔωLX between the
central laser frequency and the transition frequency con-
necting the ground and the exciton state of the QD as well
as the pulse area Θ. An oscillatory behavior as a function of
the pulse area with maxima at odd multiples of π is
observed [cf., Fig. 2(a)]. This is a consequence of the
well-known Rabi rotation of the exciton occupation since

FIG. 1. Sketch of the system under consideration. A two-level
QD with a ground state jGi and an exciton state jXi is coupled to
a lossy single-mode microcavity. The jGi → jXi transition is
driven by external laser pulses and the exciton state is coupled to
LA phonons in a pure-dephasing manner. Finally, the dot can
decay radiatively.
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the exciton feeds the cavity photons, which in turn are
measured by the brightness. As a function of the detuning,
the regions of high brightness are confined to a fairly small
range around resonance. The inclusion of phonons dras-
tically changes this picture [cf., Fig. 2(b)]. Through off-
resonant excitation with detunings that can be bridged by
the emission of LA phonons, a nonvaninshing brightness
can be obtained in a previously dark region. Note that the
asymmetry with respect to the sign of the detuning is due to
the low temperature of T ¼ 4.2 K considered here where
phonon absorption is largely suppressed.
The SPP in the phonon-free case [cf., Fig. 2(c)] also

displays Rabi rotational behavior but decreases with rising
pulse area close to resonance, which is due to a reexcitation
of the QD during the same laser pulse. This leads to the
emission of more than one photon per pulse, thus dimin-
ishing the SPP. Although a SPP can always be calculated,
one should be aware that it constitutes a physically mean-
ingful quantity only for finite brightness. Therefore, the
area of increased SPP in the upper right corner of Fig. 2(c)
is of no physical relevance.
It is intuitively expected that the continuum of LA

phonons reduces the quantum correlations of the system
and thus the SPP by inducing a manifold of transitions
between its quantum states. However, contrary to these
expectations Fig. 2(d) reveals a huge systematic increase in
P at ΔωLX ≳ 0.5 meV. Moreover, the maximum Pmax ¼
98.8% (red circle) is even larger than 90.7% obtained for
the resonantly driven system (blue circle). Combined with

an appreciably large B, this indicates a possibility to have a
good quality single-photon source in the off-resonant
excitation regime. Note that B ¼ 0.46 observed at the
point of Pmax [cf., red circle in Fig. 2(b)] is not much
smaller than the maximal value of 0.67 achieved in the
resonantly driven case [cf., blue circle in Fig. 2(b)]. It is
also noteworthy that it is possible to obtain a significantly
larger brightness at the cost of a slight decrease in the SSP.
For example, if we choose a trade-off by maximizing the
sum of the squares of the two figures of merit in the off-
resonant regime, we obtain B ¼ 0.53 and P ¼ 98.1% (red
square). This value for P is close to typical experimental
values obtained for resonant excitation of the quantum dot
exciton (98.8% [4], 99.1% [7]) even though the pulse
lengths in Refs. [4,7] have been slightly shorter [40].
To explain the mechanism behind this observation, one

needs to consider the dynamics of the QD-cavity states.
In Fig. 3, the time dependent occupations in the resonant
and the off-resonant case (cf., the blue and red circles in
Fig. 2, respectively) are compared. The considered states
are product states between the QD states and a photon state
with photon number n. After resonant π-pulse excitation
[cf., Fig. 3(a)], the exciton state jX; 0i without photons is
occupied (blue curve). The cavity coupling rotates the dot
back to its ground state and produces one photon in the
cavity (orange curve). Because the driving is still nonzero at
this point, the dot is reexcited to produce an occupation of
the state jX; 1i (green curve), which is shown in the inset of
Fig. 3(a). Finally, the cavity coupling leads to an occupa-
tion of the ground state with two photons jG; 2i (red curve),
such that the SPP is diminished.
In contrast to the π-pulse induced rotation of the Bloch

vector, the off-resonant excitation scheme exploits an effect
called adiabatic undressing [27]. Switching on the laser
transforms the dot states to a new energy eigenbasis
commonly known as laser-dressed states, the gap between
which can be bridged by LA phonons with typical energies
of a few meV. At low temperatures, the lower dressed
state becomes occupied via phonon emission. However, the
phonon-induced relaxation is only efficient when both
dressed states have roughly equal exciton components.
Thus, the exciton state exhibits typically occupations of the
order of 50% after the relaxation is completed [27]. When
the laser is turned off adiabatically, the lower dressed state
is subsequently transformed to the exciton state in the
original basis provided the detuning is positive (otherwise
the ground state is reached [27]). This adiabatic undressing
of the dot states therefore boosts the exciton occupation
only at the end of the pulse [cf., the blue curve in Fig. 3(b)].
This in turn means that during the phase of phonon
relaxation no photon can be put into the cavity efficiently
[cf., the orange curve in Fig. 3(b)].When finally the adiabatic
undressing-induced exciton boost occurs, the occupation of
jG; 1i follows [cf., Fig. 3(b)]. Since the excitation pulse is
basically gone by then, the reexcitation of the QD is strongly

(a) (b)

(c) (d)

FIG. 2. Brightness B [panels (a) and (b)] and SPP P [panels (c)
and (d)] as a function of the laser-exciton detuning ΔωLX and the
excitation pulse area Θ of a pulse in the pulse train. The left
column (a), (c) is the result of a phonon-free calculation, the right
column (b), (d) includes the coupling to a continuum of LA
phonons. Blue circle: resonant π-pulse excitation. Red circle:
maximal SPP (with phonons). Red square: optimal SPP and
brightness for off-resonant excitation (with phonons).
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suppressed (green curve), such that effectively no second
photon can be put into the cavity (red curve). This implies a
far higher SPP than in the resonant counterpart, as is observed
in Fig. 2(d). In summary, the delay of the exciton occupation
caused by the two-step procedure of first relaxing to a dressed
state via phonon emission and then reaching the exciton by
adiabatic undressing is responsible for the enhancement of
the SPP.
To quantify the robustness of the phonon-induced SPP

enhancement against variations of other system parameters,

the difference between the SPP after off-resonant excitation
and after the resonant one is shown as a function of
the radiative decay γ and the cavity loss rate κ in Fig. 4.
A positive value (reddish shade) indicates a set of param-
eters where the SPP is enhanced for off-resonant excitation.
We find such an enhancement for a wide parameter regime
in κ and γ that is experimentally well accessible. Also,
changing the pulse length from 7 ps in Fig. 4(a) to 14 ps in
Fig. 4(b) does not change the phonon-induced SPP
enhancement qualitatively. The reason why the SPP for
off-resonant excitation falls below the resonant one in the
bad cavity limit and/or in the limit of high radiative losses is
that relaxation processes limit the time available for the
adiabatic undressing which eventually becomes incomplete.
In conclusion, we have presented a seemingly paradoxical

scheme for the phonon-assisted operation of a QD-cavity
system as a single-photon source, where the excitation is
spectrally separated from the generated photons. Two factors
that would separately lead to a quality degradation—off-
resonant driving and dot-phonon coupling—in combination
result in a huge boost in critical characteristics of a single-
photon source. We have demonstrated that the achievable
single-photon purity can be noticeably higher than for
resonant excitation while the brightness is still at an accept-
able level. The physical mechanism of this enhancement—
the adiabatic undressing—is realized in a wide interval of
physically accessible parameters.
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FIG. 3. Time-dependent occupations: (a) after resonant π-pulse excitation (cf., blue circle in Fig. 2) and (b) in the off-resonant phonon-
assisted case (cf., red circle in Fig. 2). The occupations of the states jX; 0i, jG; 1i, jX; 1i, and jG; 2i are shown as colored filled curves.
The Gaussian envelope of the laser driving pulse normalized to its maximum value centered at tp is shown as a black dashed line. The
insets show the same curves, respectively, on an enlarged scale for the occupations.

(a) (b)

FIG. 4. The difference between the SPP after off-resonant
phonon-assisted excitation Poff-res and after resonant π-pulse
rotation Pres is shown for two different pulse lengths (FWHM),
namely: (a) 7 ps and (b) 14 ps, as a function of radiative decay ℏγ
and cavity losses ℏκ. The cavity quality factor Q ¼ ωc=κ is
obtained via the cavity losses assuming a cavity single-mode
energy of ℏωc ¼ 1.5 eV. The pulse area is set to 12.75π and
ΔωLX ¼ 1.1 meV.
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