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We propose a systematic way of constructing Floquet second-order topological insulators (SOTIs) based
on time-glide symmetry, a nonsymmorphic space-time symmetry that is unique in Floquet systems.
In particular, we are able to show that the static enlarged Hamiltonian in the frequency domain acquires
reflection symmetry, which is inherited from the time-glide symmetry of the original system. As a
consequence, one can construct a variety of time-glide symmetric Floquet SOTIs using the knowledge of
static SOTIs. Moreover, the time-glide symmetry only needs to be implemented approximately in practice,
enhancing the prospects of experimental realizations. We consider two examples, a 2D system in class AIII
and a 3D system in class A, to illustrate our ideas, and then present a general recipe for constructing Floquet
SOTIs in all symmetry classes.
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Introduction.—Symmetry and topology are both at the
cruxof topological phases.Nonspatial symmetries, i.e., time-
reversal (TR), particle-hole, and chiral symmetries, allow a
classification of topological insulators and superconductors
into one of the ten Altland-Zirnbauer (AZ) symmetry classes
[1–5]. When additional spatial symmetries are considered,
the classification can be enriched, giving rise to weak
topological insulators (TIs) [6] protected by lattice transla-
tional symmetry, as well as the topological crystalline
insulators [6,7], protected by crystalline symmetries.
Recently, the idea of utilizing crystalline symmetries was

used to construct and understand a new family of TIs: the
higher-order TIs [8–14]. An nth-order TI in d dimensions
will have topologically protected gapless modes that live in
the (d − n)-dimensional boundaries, but all ðd − n0Þ boun-
daries with n0 > n are gapped. Thus, the conventional TIs
are first-order TIs according to this definition, while the
second-order TIs (SOTIs) in two and three dimensions will
host protected zero energy corner modes and gapless hinge
modes, respectively.
On the other hand, topological phases also exist under

nonequilibrium conditions and can be realized by time-
periodic driving, known as Floquet engineering. For
instance, a Floquet TI with chiral edge modes can be
brought from a static band insulator by applying a periodic
drive, such as a circularly polarized radiation or an
alternating Zeeman field [15–19]. Thus, it is natural to
ask, how can higher-order TIs be generated with Floquet
engineering? Recently, specific examples of such systems
were introduced in Refs. [20–22].
In this work, we provide a general recipe of constructing

Floquet second-order TIs in all symmetry classes, by

making use of the dynamical nature and the time dimension
in a Floquet system. In particular, we construct Floquet
SOTIs from an approximate time-glide symmetry [23], a
specific nonsymmorphic space-time crystalline symmetry
[24], which is unique in a time-periodic system and has no
static analog.
The basic principle behind our construction is as follows.

The (d − 1)-dimensional boundaries in the Floquet SOTIs
are essentially stand-alone (d − 1) Floquet insulators from a
topological perspective, similar to their static cousin [10].
Hence, topologically protected corner (d ¼ 2) or hinge
(d ¼ 3) modes naturally become domain-wall excitations
at the intersection of two gapped boundaries, if these fall
into different topological phases. The approximate space-
time symmetry then crucially protects such domain walls.
The use of space-time symmetries in Floquet engineer-

ing of SOTIs may offer certain advantages over other
recipes of creating SOTIs based only on spatial point group
symmetries. Using external time-dependent fields may
remove stringent requirements on material structure, and
introduce more controllability. To wit, space-time sym-
metries can be induced externally, by applying alternating
fieldswhich change directions every half a period.Moreover,
these space-time symmetries need only be approximately
implemented, further enhancing prospects for experimental
realizations.
Floquet second-order topological insulators with time-

glide symmetry.—The corner and edge modes in a Floquet
SOTI actually follow the classification of one- and two-
dimensional Floquet topological insulators; seeRefs. [25,26],
for example. Thus, we only have Floquet SOTIs in certainAZ
symmetry classes, as shown in Table I, where we have listed
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the topological invariants for each quasienergy gap. Note that
these invariants in d dimensions are exactly the same as the
ones in a Floquet topological insulator in d − 1 dimensions.
We will show in the following that it is possible to construct
Floquet SOTI systematically in all five nontrivial AZ classes,
based on a single time-glide symmetryM, which ensures the
presence of topologically protected corner or edge states.
The time-glide symmetry is a nonsymmorphic space-

time symmetry, which is composed of a spatial reflection
and a half-period time translation [23,24]. Without loss of
generality, let us focus on the situation where the reflection
plane within the time glide is perpendicular to x. When the
symmetry acts on the Bloch Hamiltonian Hðkx;kk; tÞ,
where kk denotes the rest Bloch momenta parallel to the
reflection plane, we have

MHðkx;kk; tÞM ¼ Hð−kx;kk; tþ T=2Þ; ð1Þ

where M is the operator implementing the time-glide
symmetry, which is both unitary and Hermitian.
A complete classification of time-glide symmetric

Floquet topological insulators and superconductors in all
AZ classes has been worked out in Ref. [23]. It was shown
that when the edge is mapped onto itself by the reflection
part of the time-glide operation, it can host protected
anomalous Floquet gapless modes [27,28], even though
the classification of the Floquet system without the time-
glide symmetry is trivial. The existence of these anomalous
Floquet modes is distinct from the modes protected by the
spatial reflection symmetry in topological crystalline
insulators, and is purely due to the space-time dynamical
symmetry which has no static counterpart.
By deploying the dynamical time-glide symmetry, we

can construct intrinsically nonequilibrium Floquet SOTIs
with anomalous corner or hinge modes. Our recipe follows
three rules, similar to the ones for constructing static SOTIs
[10]. First, we require that one or more pairs of system
boundaries are mapped onto each other by the reflection
part of the time-glide operation. Second, the topological
classification will be trivial when the time-glide symmetry
is broken. Third, the classification of the corresponding
AZ class in (d − 1) dimensions must be nontrivial. This
guarantees that the time-glide-symmetry-breaking mass,
which gaps the glide-protected boundaries, is unique.
In Table I, we list all the Floquet SOTIs that can be

constructed according to the above recipe. In the rest of the
Letter, we will construct examples of Floquet SOTIs
hosting anomalous Floquet corner or hinge modes, namely
the modes with quasienergies inside the bulk gap at the
Floquet zone boundaries.
Our construction of Floquet SOTIs uses the frequency-

domain formulation of the Floquet problem [27]. In this
formulation, the quasienergies fϵjg result from diagonal-
izing the enlarged HamiltonianHðkÞ, whose matrix blocks
are given by Hðk; tÞ as Hmm0 ðkÞ ¼ mωδmm0 I þHm0−mðkÞ,

with HnðkÞ ¼ ð1=TÞ R T
0 dtHðk; tÞe−inωt. Here I is the

identity matrix of the same dimension as HðkÞ, and
m;m0; n ∈ Z. Moreover, quasienergies ϵj and ϵj þmω
describe the same physical state, and only quasienergies
within a single interval of ω, e.g., the “first Floquet zone”
with −ω=2 < ϵj < ω=2, are unique.
To obtain a low-energy effective theory of the anomalous

Floquet SOTIs, we should focus on gapless edge modes
near ϵ ¼ ω=2 (modulo ω), similar to the static case where
one assumes a Dirac-like low-energy theory. These states
would always be a result of the time-dependent drive. For
that, we focus on a 2 × 2 block of H containing the two
Floquet zones shifted by ð2nþ 1Þω, with some n ∈ Z;
namely,

Heff ¼
0

@
H0 þ ðnþ 1

2
Þω H2nþ1

H†
2nþ1 H0 − ðnþ 1

2
Þω

1

Aþ ω

2
ρ0; ð2Þ

with ρ0 the identity in the two Floquet zone basis. This
describes the situation where the bottom band of H0 þ
ðnþ 1Þω crosses the top band of H0 − nω, and H2nþ1

opens a bulk gap at the crossing. The last term in Eq. (2)
shifts the energy origin of the problem by ω=2. What
remains of HeffðkÞ is a reflection-symmetric system, with
the effective reflection symmetry operatorReff ¼ ρz ⊗ M,
where ρx;y;z are the Pauli matrices in the space of the two
Floquet zones. Hence, we have mapped a Floquet system
with a time-glide symmetry to a static system with a
reflection symmetry within the effective description of the
anomalous Floquet edge modes.

TABLE I. The AZ symmetry classes are defined by the
presence (�1) or absence (0) of time-reversal T , particle-hole
C, and chiral symmetry S. The values�1 correspond to T 2, C2, or
S2. The topological invariants at a particular quasienergy gap for
the two-dimensional and three-dimensional Floquet SOTIs,
which can be constructed from time-glide symmetric Floquet
topological phases, are listed in last four columns, as well as the
time-glide symmetry M. The symbols MηS , MηT , MηC , and
MηTηC refer to a time-glide operator that squares to one and
commutes (η ¼ þ) or anticommutes (η ¼ −) with S, T , and C;
i.e., MS ¼ ηSSM, MT ¼ ηTT M, and MC ¼ ηCCM.

Class T C S d ¼ 2 d ¼ 3

A 0 0 0 � � � 0 M Z
AIII 0 0 1 M− Z � � � 0
AI 1 0 0 � � � 0 � � � 0
BDI 1 1 1 Mþ− Z � � � 0
D 0 1 0 M− Z2 M− Z
DIII −1 1 1 Mþ−,M−þ, M−− Z2 Mþ−,M−− Z2

AII −1 0 0 � � � 0 Mþ, M− Z2

CII −1 −1 1 Mþ−,M−þ 2Z � � � 0
C 0 −1 0 � � � 0 M−, Mþ 2Z
CI 1 −1 1 � � � 0 � � � 0
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Based on the Hamiltonian Eq. (2), we construct lattice
models for harmonically driven SOTIs of the form

Hðk; tÞ ¼ H0ðkÞ þH1ðkÞeiωt þH†
1ðkÞe−iωt; ð3Þ

which couples the upper bands of H0 þ ω to the lower
bands of H0, corresponding to the n ¼ 0 case of Heff of
Eq. (2).H0;1ðkÞ respect the time-glide symmetry, as well as
the nonspatial class-appropriate AZ symmetries.
Before we proceed, it is important to note that terms that

gap the anomalous Floquet gapless modes when time-glide
symmetry is broken are odd under the time-glide operation
(crucially, such terms arise when edges are not locally
symmetric under the mirror element of the glide). Hence,
the masses in the quasienergy spectra of the two (d − 1)
boundaries, which are connected via the time-glide oper-
ation, will generically give rise to (d − 2) boundary modes.
One can, therefore, break the time-glide symmetry and still
have protected (d − 2) boundary modes as long as the gaps
of the bulk and the (d − 1) boundaries do not close. Hence,
the time-glide symmetry need only be implemented
approximately, which greatly enhances the prospects of
an experimental realization.
Two-dimensional Floquet SOTI in class AIII.—For a

Floquet system in class AIII in 2D with a time-periodic
Bloch Hamiltonian Hðkx; ky; tÞ ¼ Hðkx; ky; tþ TÞ of
period T, chiral and time-glide symmetry operators S
and M obey SHðkx; ky; tÞ ¼ −Hðkx; ky;−tÞS and
MHðkx; ky; tÞ ¼ Hð−kx; ky; tþ T=2ÞM. Without the
time-glide symmetry, 2D Floquet insulators are trivial.
When, however, the time-glide symmetry anticommutes
with S, such systems support a Z classification.
The effective Hamiltonian defined in Eq. (2) describes a

reflection-symmetric system in class AIII, with an effective
chiral symmetry Seff ¼ ρx ⊗ S. When fM;Sg ¼ 0, we
have ½Seff ;Reff � ¼ 0, which leads to a Z topological
classification and can give rise to helical edge modes
[29,30] at the reflection-symmetric edge.
Indeed, the anomalous edge state perpendicular to the

time-glide plane can be characterized by an edge
Hamiltonian HedgeðkxÞ ¼ ω=2þ kxΓx, where the edge-
mode velocity was rescaled to 1, and Γx describes a number
of helical modes, and satisfies Γ2

x ¼ 1. Because of the
presence of Seff and Reff , we have ½Γx;SeffReff � ¼ 0.
Hence, Γx and SeffReff can be simultaneously diagonal-
ized. Suppose we can add a mass term Γm that respects both
the effective chiral and reflection symmetries. Then we
have fΓm;SeffReffg ¼ 0, indicating that Γm can only gap
out helical modes with opposite eigenvalues of SeffReff .
Thus, theZ topological index actually counts the difference
between the number of helical edge states with positive and
negative eigenvalue of SeffReff .
Let us consider, for instance, the helical states with

SeffReff ¼ 1. The reflection operation here is effectively
the same as the chiral symmetry operation; namely,

Reff ¼ Seff . If we further consider a spatial configuration
with an edge that breaks the effective reflection symmetry,
a mass Γm that preserves the chiral symmetry, with
fΓm;Reffg ¼ 0 and fΓm;Γxg ¼ 0, can be added to the
edge Hamiltonian. In particular, those edges which are
connected via the reflection operation will have opposite
mass. Since class AIII in one dimension has aZ topological
invariant, the mass is unique. Thus, the intersection of
two reflection-related edges corresponds to a domain wall
for the edge theory, which harbors an anomalous Floquet
localized state at ω=2.
A lattice model that realizes such a Floquet SOTI follows

the form of Eq. (3), with H0ðkÞ¼ðm−coskx−coskyÞτzþ
bσz, and H1ðkÞ ¼ ðsin kyσy − i sin kxÞτ−. Here σx;y;z and
τx;y;z are the two sets of Pauli matrices for this four-band
model, and τ� ¼ ðτx � iτyÞ=2. The chiral and time-glide
symmetries are realized by S ¼ τxσx, M ¼ σz.
The corresponding effective Hamiltonian Heff of Eq. (2)

with n ¼ 0 is actually block diagonalized into two blocks
with ρzτz ¼ �1. The block with ρzτz ¼ 1 is actually a
trivial band insulator, whereas the one with ρzτz ¼ −1
describes a reflection symmetry topological insulator with
helical modes on the edge parallel to x around momentum
kx ¼ 0 for ðm − ω=2Þ ∈ ð0; 2Þ, and around momentum
kx ¼ π for ðm − ω=2Þ ∈ ð−2; 0Þ, where b is numerically
small. In these parameter regimes, if we cut the system
such that the two edges are mapped into each other via the
reflection with respect to the time-glide plane, we expect
to find corner modes at their intersections. Note that this
model also has a reflection symmetry implemented by τzσz.
One can actually introduce an additional term b0τy that
breaks this reflection symmetry without affecting the corner
modes, as shown in the numerics.
Figure 1(a) depicts these states, alongside the quasiener-

gies close to ω=2 in Fig. 1(c). Even boundaries that
completely break time-glide symmetry, as in Fig. 1(b), still
give rise to localized corner modes, which are still pinned to
ω=2 and separated by a smaller gap from the states at other
quasienergies; see Fig. 1(c). Thus, the presence of anomalous
corner modes does not rely on the time-glide symmetry.

(a) (b) (c)

FIG. 1. (a),(b) Support of the anomalous Floquet corner modes
(darker for a larger magnitude) at quasienergy ω=2 obtained from
exact diagonalization of the enlarged Hamiltonian H (truncated
up to H0 � 2ω) for the two-dimensional class AIII system with
time-glide symmetry defined in Eq. (3), with ω ¼ 6, m ¼ 4,
b ¼ 0.4, b0 ¼ 0.8 (reflection-symmetry-breaking term). The red
dashed line indicates the time-glide plane. (c) The ten eigenvalues
closest to ω=2 for the two systems are shown.
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It is worth mentioning that a time-glide symmetric
Floquet SOTI can also be constructed using a two-step
drive, which may be easier to implement experimentally.
For example, let us consider a system driven by two static
Hamiltonians H� in each half period, defined as

H� ¼ cos kxτx þ sin kxτy þ Jðcos kyσx � sin kyτyσyÞ; ð4Þ

where the chiral and the time-glide (with reflection of the
x direction) symmetries are realized by S ¼ τzσz and
M ¼ τx. It was shown in Ref. [23] that this system can
also host anomalous Floquet helical edge modes protected
by the time-glide symmetry. If the system contains a pair
of edges which are approximately reflected onto each other
by the time-glide symmetry, as in Figs. 1(a) and 1(b),
anomalous Floquet corner modes appear at the intersec-
tions (see Supplemental Material [31]).
Three-dimensional Floquet SOTI in class A.—Without

time-glide symmetry, 3D Floquet systems in class A are
topologically trivial. Imposing a time-glide symmetry
(realized by M) gives rise to anomalous Floquet surface
modes. Consider the effective Hamiltonian Heff given in
Eq. (2). Then Heff describes a class A system with an
additional reflection symmetry Reff, which allows for a Z
mirror Chern number enumerating gapless surface states at
reflection-symmetric surfaces [29,30].
The surface Hamiltonian describing the gapless modes

on the plane normal to the z direction can be written as
Hsurface ¼ ω=2þ kxΓx þ kyReff , with fΓx;Reffg ¼ 0. A
reflection-symmetry-breaking mass Γm, with fΓm;Reffg ¼
0 and fΓm;Γxg ¼ 0, will gap the surface. This mass is
unique as class A in 2D has a nontrivial topological
classification.
A 3D model also arises here by embedding a static (x

direction) reflection-symmetric system intoHeff . Using the
form in Eq. (3), with H0ðkÞ ¼ ðm −

P
j¼x;y;z cos kjÞτz þ

bσx and H1ðkÞ ¼
P

j¼x;y;z sin kjσjτ−, yields a 3D Floquet
SOTI, with time-glide symmetry M ¼ σx.
When ðm − ω=2Þ ∈ ð1; 3Þ, and b numerically small, the

ρzτz ¼ −1 block of Heff [of the form of Eq. (2)] is a 3D
reflection-symmetric topological crystalline insulator in
class A, with a gapless surface mode on the boundary
normal to x. When we have two surfaces related by the
reflection symmetry, a localized hinge mode appears at
the intersection of the two surfaces. This corresponds to the
anomalous Floquet modes of the full harmonically driven
system. Similar to the class AIII case, this model also has a
reflection symmetry implemented by τzσx. One can get rid
of this symmetry by invoking b1τx, b2τy, etc., without
affecting the hinge modes.
Figure 2(a) presents a computation of the quasienergies

of the Floquet hinge mode as a function of momentum kz,
with periodic boundary conditions assumed along the z
direction. In Fig. 2(b), the support of the hinge mode at
kz ¼ 0 was shown. When we consider a finite cube, where

all surfaces generically break the reflection symmetry
around the time-glide plane, as in Fig. 2(c), we see that
the chiral Floquet hinge mode zigzags along certain hinges
of the cube, as in the static 3D class A SOTI [10].
Floquet SOTI in real symmetry classes.—As we claimed

above, the recipe of constructing Floquet SOTIs is com-
pletely general and can also be applied to real symmetry
classes with time-reversal T and/or particle-hole (PH) C
symmetries, which give rise to an effective TR T eff ¼ ρ0 ⊗
T or/and an effective PH Ceff ¼ ρx ⊗ C symmetry on
the frequency-domain effective Hamiltonian Heff defined
in Eq. (2).
For a system with time-glide symmetry MηT ;ηC, where

ηT , ηC characterizes the commutation relation between time
glide, and the TR and PH, if they exist, namely, MT ¼
ηTT M, MC ¼ ηCCM. This determines the commutation
relations between the effective reflection RσT ;σC

eff and effec-
tive TR and PH, with σT and σC defined similarly as
ReffT eff ¼ σTT effMeff , MeffCeff ¼ σCCeffMeff . It is easy
to show that σT ¼ ηT and σC ¼ −ηC. In fact, Table I is the
same as Table I in Ref. [10], if we replace R by M while
taking into account the modification of commutation
relations. Hence, a topological property of the quasienergy
gap at the Floquet zone boundary in a time-glide symmetric
Floquet system can be obtained from analyzing the corre-
sponding reflection-symmetric static system in the same
symmetry class, according to the mapping defined above.
To construct time-glide symmetric Floquet SOTIs using

harmonic drives, let us start with a general d-dimensional
static SOTI Hamiltonian of the form [32] hðkÞ ¼P

d
j¼0 djðkÞΓj þ bB, where d0ðkÞ¼mþP

d
j¼1ð1−coskjÞ,

and for j ¼ 1;…; d, djðkÞ ¼ sin kj. Here the matrices Γ0

and Γjs are mutually anticommuting, and B commutes with
Γ0;1 but anticommutes with the rest of the Γj’s, which
ensures for small b that this Hamiltonian describes a
topological crystalline phase with reflection symmetry in
the first coordinate. One can choose Γ0 ¼ τz, and embed h

(a) (b) (c)

x

y
�z

FIG. 2. (a) Bulk (black) and hinge (red) Floquet band structure
near ω=2 obtained from exact diagonalization of the enlarged
Hamiltonian H (truncated up to H0 � 2ω) at each momentum
along z (periodic boundary condition), for the three-dimensional
harmonically driven Floquet system in class A, with time-
glide symmetry. The parameters are ω ¼ 10, m ¼ 7, b ¼ 0.4.
(b) Support of the anomalous Floquet hinge modes at kz ¼ 0 at
quasienergy ω=2. (c) Support of the hinge modes with open
boundary conditions along all directions. Here all surfaces break
the reflection symmetry about the time-glide plane, which is
shown in blue.
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into the ρzτz ¼ −1 block of Heff , with m → m − ω=2.
This will give rise to a harmonically driven Floquet SOTI of
the form described in Eq. (3) in the same AZ class of hðkÞ.
Conclusion.—In this work, we extend the second-order

topological phase to the Floquet scenario. Particularly, we
show how to systematically construct Floquet SOTIs based
on time-glide symmetry, which is a nonsymmorphic space-
time symmetry unique to Floquet systems.
When a pair of boundaries in the system, which defy the

mirror symmetry, are approximately related via the reflec-
tion about the time-glide plane, a Floquet corner or hinge
mode can appear at the intersection. This can be understood
in the frequency-domain formulation of the Floquet system,
by focusing on the effective two-by-two block of the
enlarged Hamiltonian. We showed that this effective
Hamiltonian acquires a reflection symmetry inherited from
the time-glide symmetry, besides the AZ symmetries.
Thus, the properties of the time-glide symmetric Floquet

SOTI can be understood from our previous knowledge of
the static reflection symmetry SOTI [10]. Furthermore,
we are able to systematically construct explicit models of
harmonically driven time-glide symmetric Floquet SOTI,
from Hamiltonians of static SOTIs. In addition to two
examples (2D class AIII and a 3D class A systems), we
showed that our recipe yields Floquet SOTIs in other
symmetry classes. Since the lattice vibrations naturally
break the static reflection symmetry while preserving the
time-glide symmetry, we can expect to create Floquet
SOTIs by exciting a particular phonon mode [33,34].
On the other hand, the phonons can also used as a heat
bath to prevent the system from heating [35,36].
For other nonsymmorphic space-time symmetries that

may give rise to Floquet higher-order topological insula-
tors, our frequency-domain analysis can be applied and the
knowledge of static systems with other crystalline sym-
metries can be used similarly. We intend to pursue these
directions in our future work.
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