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Anyonic fractional charges e� have been detected by autocorrelation shot noise at a quantum point
contact (QPC) between two fractional quantum Hall edges. We find that the autocorrelation noise can also
show a fingerprint of Abelian anyonic fractional statistics. We predict the noise of the electrical tunneling
current I at the QPC of the fractional-charge detection setup, when anyons are dilutely injected, from an
additional edge biased by a voltage, to the setup in equilibrium. At large voltages, the nonequilibrium noise
is reduced below the thermal equilibrium noise by the value 2e�I. This negative excess noise is opposite to
the positive excess noise 2e�I of the conventional fractional-charge detection and also to the usual positive
autocorrelation noises of electrical currents. This is a signature of Abelian fractional statistics, resulting
from the effective braiding of an anyon thermally excited at the QPC around another anyon injected from
the additional edge.
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Abelian anyons appear in fractional quantum Hall
(FQH) systems with a filling factor of ν ¼ 1=ð2nþ 1Þ,
n ¼ 1; 2;…. They obey the fractional exchange statistics
[1–3]. Two anyons gain the phase�πνwhen their positions
are adiabatically exchanged and �2πν when one braids
around the other. Proposals [4–20] for detecting the
fractional statistics are based on interferometers or current-
current cross-correlations. They involve quantities exper-
imentally inaccessible or affected by an unintended setup
change or Coulomb interaction. It will be useful to find
fractional-statistics effects experimentally feasible.
Shot noise S, the zero-frequency nonequilibrium fluc-

tuation of electrical current I, has valuable information
[21]. Its Poisson value S ¼ 2qI in the tunneling regime of a
quantum point contact (QPC) was used to detect the charge
q of current carriers [22]. The fractional charge e� ¼ νe of
anyons was measured [23–29] from the ratio S=I ¼ 2e� at a
QPC between FQH edges; e is the electron charge. The
Poisson value originates from the uncorrelated transfer of
discrete charges. Reduction or enhancement from the value
signifies effects such as resonances, diffusive scattering,
Cooper pairing, etc. [21].
In this Letter, we predict unusual behavior of shot noise,

originating from the Abelian fractional statistics of
Laughlin anyons, in the setup [Fig. 1(a)] composed of
the conventional fractional-charge detection part (edge 2,
edge 3, QPC2) and an additional edge (edge 1). Anyons are
dilutely injected [30–33] via QPC1 from edge 1, biased by
voltage V, to the detection part in equilibrium. We find that
the zero-frequency autocorrelation noise SðV; TÞ of the
tunneling current I at QPC2 is reduced below the thermal
equilibrium noise Sð0; TÞ at temperature T,

δS ¼ −2e�I < 0 at e�V ≫ kBT: ð1Þ

δS≡ SðV; TÞ − Sð0; TÞ is the excess shot noise with
respect to the thermal noise and kB is the Boltzmann
constant. The negative excess noise is unusual, since the
setup has the conventional Poisson process [Fig. 1(b)]
enhancing the noise; it is opposite of the positive noise
2e�I > 0 of the conventional fractional-charge detection
[23–29]. By contrast, in the integer quantum Hall regime at
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FIG. 1. (a) Setup at ν ¼ ð1=2nþ 1Þ. Chiral edge channel edge i
propagates (arrows) from source Si to drain Di, i ¼ 1, 2, 3. S1
is biased by voltage V, while the other sources and drains are
grounded. Anyon tunneling occurs at QPC1 (QPC2) between
edge 2 and edge 1 (edge 3). (b) Poisson process. A particlelike
anyon biased by V (narrow filled packets, dashed arrows) moves
from edge 1 to D3 through tunneling at QPC1 and QPC2.
(c) Interference between subprocesses a1 and a2. A particlelike
anyon biased by V moves (dashed) from edge 1 to D2 through
tunneling at QPC1. After (before) this anyon passes QPC2 along
edge 2, a particle-hole pair excitation thermally occurs at QPC2 in
a1 (a2). The particlelike anyon (wide filled packets) and the holelike
anyon (wide empty) in the pairmove (solid arrows) along edge2 and
edge 3, respectively. The interference between a1 and a2 involves
braiding of the thermal anyon around the voltage-biased anyon.
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ν ¼ 1, the setup shows the positive Poisson noise of
δS¼2eI>0, which cannot be extrapolated from Eq. (1)
with e� ¼ e=ð2nþ 1Þ → e.
The negative excess noise results from an interference

involving anyon braiding [Fig. 1(c)], which weakens
thermal anyon tunneling at QPC2, reducing the noise.
The reduction dominates over the enhancement by the
Poisson process. Interestingly, for electrons at ν ¼ 1, the
interference does not exist, as it is described by a pair of
disconnected Feynman diagrams that exactly cancel each
other, according to the linked cluster theorem [34]. For
anyons, the cancellation is only partial, since the subdia-
grams (vacuum bubbles) of one of the disconnected
diagrams are linked [35] by the braiding. This type of
anyon process, vacuum bubbles linked by braiding, is
called topological vacuum bubbles (TVBs) [36]. Detection
of the negative excess noise is experimentally feasible and
will provide a signature of TVBs and the fractional
statistics in the case of pristine edges (without edge
reconstruction). The signature manifests itself in the lead-
ing-order contributions (in QPC tunneling strengths) to the
excess noise, thanks to the dilute anyon injection at QPC1.
Excess noise.—We consider the time t average I ¼ IðtÞ

of tunneling current IðtÞ at QPC2 and its zero-frequency
noise S ¼ 2

R
∞
−∞ dt½IðtÞ − I�½Ið0Þ − I�. Employing a pertur-

bation theory based on the chiral Luttinger liquid [37,38],
Keldysh Green’s functions, and Klein factors [39], we
derive I and δS¼SðV;TÞ−Sð0;TÞ at voltages e�V ≫ kBT
in the anyon tunneling regime of γiTν−1 ≪ 1, up to the
leading order Oðγ21γ22Þ of tunneling strength γi at QPCi,

I ≃ e�γ21γ
2
2fðνÞ½cosðπνÞ − cosð3πνÞ�V2ν−1T2ν−2;

δS ≃ −2e�2γ21γ22fðνÞ½cosðπνÞ − cosð3πνÞ�V2ν−1T2ν−2: ð2Þ

This gives Eq. (1) [40,41]. Notice that I > 0, but δS < 0.
The factors having πν originate from anyon braiding.
The current I and excess noise δS are linked to

measurable quantities. I equals the average current I3 ¼
I3ðtÞ at D3, as only S1 is biased. δS is obtained [41] by

δS ¼ S3ðV; TÞ − 4kBT
∂I3ðV; T; V3Þ

∂V3

�
�
�
�
V3¼0

−
�

S3ð0; TÞ − 4kBT
∂I3ð0; T; V3Þ

∂V3

�
�
�
�
V3¼0

�

: ð3Þ

The noise S3ðV; TÞ ¼ 2
R∞
−∞ dt½I3ðtÞ − I3�½I3ð0Þ − I3� is

measured at D3. ∂I3ðV; T; V3Þ=∂V3jV3¼0 is measured
with the voltage V3 applied to S3 in addition to the voltage
V at S1 and equals the correlation between the tunneling
current IðtÞ at QPC2 and the current from S3 to QPC2,
according to the nonequilibrium fluctuation-dissipation
theorem [42–44].
Main processes.—We discuss the origin of δS < 0.

The tunneling current and its excess noise satisfy [45]

I ¼ e�ðW2→3 −W3→2Þ and δS ¼ 2ðe�Þ2ðW2→3 þW3→2Þ.
W2→3 (W3→2) is the change, by the voltage V, in the rate
for a particlelike (holelike) anyon to move from edge 2 to
edge 3 at QPC2. Two types of processes, Poisson processes
and TVBs, make the contribution WP

i→j and WTVB
i→j , respec-

tively, to Wi→j,

Wi→j ≃WP
i→j þWTVB

i→j at e�V ≫ kBT: ð4Þ

Wi→j is computed in the Supplemental Material [41].
In the Poisson process [Fig. 1(b)] forWP

2→3, a particlelike
anyon, biased by the voltage V, moves from edge 1 to edge
3 through tunneling at QPC1 and QPC2. This leads to
WP

2→3 ∝ γ21γ
2
2V

4ν−3, as the voltage-biased tunneling prob-
ability at QPCi and the current from S1 to QPC1 are
proportional to γ2i V

2ν−2 and V, respectively. By contrast,
WP

3→2 ¼ 0, since tunneling of a holelike anyon from edge 2
to edge 3 is not induced by V.
Next, we consider the TVB for WTVB

3→2. It is the interfer-
ence of two subprocesses a1 and a2 [Fig. 1(c)]. In a1 and
a2, a particlelike anyon, induced by the voltage V, moves
from edge 1 to edge 2 via tunneling at QPC1 at time t1 and
then moves to D2. The operator for the QPC1 tunneling is
T 1→2ðt1Þ ¼ Ψ†

2ð0; t1ÞΨ1ð0; t1Þ. Ψ†
i ðxi; t1Þ creates an anyon

at position xi of edge i; QPC1 is located at xi ¼ 0. After
(before) this anyon passes QPC2, a particle-hole pair is
thermally excited at QPC2 at time t2 (t02) in the subprocess
a1 (a2). Then the particlelike thermal anyon moves to D2
along edge 2, while the holelike one moves to D3 along
edge 3. The excitation is described by the QPC2 tunneling
operator T 3→2ðtÞ ¼ Ψ†

2ðd; tÞΨ3ð0; tÞ at t ¼ t2 (t02) in
a1 (a2); QPC2 is located at x2 ¼ d (x3 ¼ 0) on edge 2
(edge 3).
To illustrate the nontrivial features (topological link by

anyon braiding and the partner disconnected process) of the
TVB for WTVB

3→2, we consider the V → ∞ limit where the
voltage-biased particlelike anyon becomes a point particle
[its spatial broadening ℏv=ðe�VÞ → 0; v is the anyon
velocity]. In this limit, the correlator

CTVB
3→2 ¼ hT †

1→2ðt1ÞT †
3→2ðt02ÞT 3→2ðt2ÞT 1→2ðt1Þi

− hT †
3→2ðt02ÞT 3→2ðt2ÞihT †

1→2ðt1ÞT 1→2ðt1Þi ð5Þ

describes the TVB. h� � �i is the ensemble average with the
bare Hamiltonian [41] Hi of edge i.
The first term of Eq. (5) shows the interference between

the subprocesses a1 and a2; T 3→2ðt2ÞT 1→2ðt1Þ describes
a1, while T 3→2ðt02ÞT 1→2ðt1Þ describes a2. This term is
factorized [41] into a subcorrelator for the voltage-biased
anyon, another for the thermal anyons, and a phase factor
ei2πν (Fig. 2),

hT †
1→2ðt1ÞT †

3→2ðt02ÞT 3→2ðt2ÞT 1→2ðt1Þi
¼ e2iπνhT †

3→2ðt02ÞT 3→2ðt2ÞihT †
1→2ðt1ÞT 1→2ðt1Þi; ð6Þ
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by using the exchange rules of the fractional statistics
Ψ†

i ðxÞΨiðyÞ ¼ ΨiðyÞΨ†
i ðxÞeiπνsgnðx−yÞ and Ψ†

i ðxÞΨ†
i ðyÞ ¼

Ψ†
i ðyÞΨ†

i ðxÞe−iπνsgnðx−yÞ (the rules between operators of
different edges are constructed, using Klein factors
[39,41]). The factor ei2πν is attributed to effective braiding
of the thermal anyon around the voltage-biased anyon in
the interference a�2a1, depicted as the link of two loops in
Fig. 2(b); the factorization is equivalent to untying the link.
The solid blue loop corresponding to the subcorrelator
hT †

3→2ðt02ÞT 3→2ðt2Þi for the thermal anyons is formed,
although t2 ≠ t02, with the help of the thermal length
ℏv=ðkBTÞ; hT †

3→2ðt02ÞT 3→2ðt2Þi is nonvanishing for
jt2 − t02j≲ ℏ=ðkBTÞ. Similarly, at finite V, the dashed red
loop representing hT †

1→2ðt1ÞT 1→2ðt1Þi for the voltage-
biased anyon is formed with jt1 − t01j≲ ℏv=ðe�VÞ, when
the tunneling at QPC1 occurs at t01 (≠ t1) in a2 as described
by T 1→2ðt01Þ. In this case, the braiding occurs for t02 <
t1 þ d=v < t2 and t02 < t01 þ d=v < t2.
The effective braiding (e2iπν) is decomposed into two

events of anyon exchange. One exchange (eiπν) occurs in

the subprocess a1 when the thermal anyon is excited on
edge 2 at QPC2 [Fig. 2(a)]. It happens such that the thermal
anyon effectively moves from the right side of the voltage-
biased anyon to the left on edge 2 (see Supplemental
Material [41]). The other (eiπν) occurs in the interference
a�2a1. The voltage-biased anyon of a2 moves back to QPC1,
passing the thermal anyon of a1 [the top dashed arrow in
Fig. 2(b)].
We call the first term of Eq. (5) a TVB since the

trajectory (dashed red loop) of the voltage-biased anyon
and that (solid blue loop) of the thermal anyon are
disconnected from each other in the conventional sense
but topologically linked [35] by the braiding. The TVB is
accompanied by a partner disconnected process [Fig. 2(c)]
that gives the second term of Eq. (5) and has the same
subprocesses as the TVB except the braiding. The TVB and
its partner disconnected process [or the correlator in
Eq. (5)] appear in our calculation [41] of Wi→j. The
pairwise appearance is understood by considering electrons
at ν ¼ 1. For the electrons, the TVB is described by a
disconnected Feynman diagram as the braiding link has no
meaning, e2iπν ¼ 1. Then it must be accompanied and
exactly canceled [leading to CTVB

3→2 ¼ 0; cf., Eqs. (5) and
(6)] by the partner disconnected diagram, following the
linked cluster theorem [34]; the second term of Eq. (5) has
the minus sign for the cancellation. Mathematically, the
partner diagram appears due in part to the partition function
of a Green’s function in its perturbation expansion; hence it
does not have the braiding link. For the anyons, the
cancellation is partial, because of the braiding.
The common factor of the two terms of Eq. (5) is further

factorized with a correlatorDiðx; t; t0Þ ¼ hΨ†
i ðx; tÞΨiðx; t0Þi

of each edge i,

hT †
3→2ðt20ÞT 3→2ðt2ÞihT †

1→2ðt1ÞT 1→2ðt1Þi
¼ eiπνD2ðd; t2; t20ÞD3ð0; t2; t20ÞD1ð0; t1; t1ÞD2ð0; t1; t1Þ:

ð7Þ

The factor eiπν comes from exchange of a thermal anyon of
a1 and another of a2 [Figs. 2(b) and 2(c)].
The TVB and its partner disconnected process give

WTVB
3→2 ∝ γ21γ

2
2V

2ν−1T2ν−2Re½eiπνðe2iπν − 1Þ�; ð8Þ

as the thermal (voltage-biased) tunneling probability at
QPC2 (QPC1) is proportional to γ22T

2ν−2 (γ21V
2ν−2), while

the current from S1 to QPC1 is proportional to V. The
phase factors come from Re½CTVB

3→2 � ∝ Re½eiπνðe2iπν − 1Þ� in
Eqs. (5)–(7). Re½� � �� is taken, considering ½CTVB

3→2 ��.
There is a TVB process for WTVB

2→3. W
TVB
2→3 is negligibly

small at e�V ≫ kBT [46].
We now compute δS=I. At e�V ≫ kBT and

ν ¼ 1=ð2nþ 1Þ < 1, the TVB for WTVB
3→2 and its partner

disconnected process dominate over the Poisson process

S1 D3 S1 D3Edge1

Edge2

Edge3

D2

S3

QPC1 QPC2

S1 D3

S1 D3 S1 D3

Partner process of 

(a)

(b)
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FIG. 2. TVB interference forWTVB
3→2. (a) Its subprocesses a1 and

a2 [identical to those in Fig. 1(c)] have the trajectory (dashed red
arrows) of a voltage-biased anyon (red filled circles) and that
(solid blue) of a thermal pair excitation of a particlelike anyon
(blue filled) and a holelike anyon (blue empty). Two trajectories
are drawn to cross when the corresponding operators are non-
commutative due to the fractional statistics. The crossing is time
ordered such that the later trajectory is drawn on top of the earlier
one. (b) TVB interference a�2a1 between a1 and a2. The
trajectories of a�2, the complex conjugation of a2, are drawn
on top of those of a1. The loop formed by the dashed red
trajectories is topologically linked with that by the solid blue
ones, implying effective braiding of the thermal anyon around the
voltage-biased anyon. The braiding phase factor is e2iπν. (c) In the
partner disconnected process of a�2a1, the two loops are unlinked,
showing no braiding. a�2a1 and its partner have a common phase
factor eiπν due to an exchange of a thermal anyon of a1 and
another of a2 (the crossing of solid blue trajectories).

PHYSICAL REVIEW LETTERS 123, 016803 (2019)

016803-3



for WP
2→3, WTVB

3→2 ≫ WP
2→3; cf., Eq. (8) and

WP
2→3 ∝ γ21γ

2
2V

4ν−3. Hence, they determine the current
and the excess noise, I ¼ −e�WTVB

3→2 and δS ¼
2ðe�Þ2WTVB

3→2 , leading to Eqs. (1) and (2). We emphasize
that the ratio δS=I has the negative universal value of −2e�.
This originates from the TVB for WTVB

3→2 and its partner
disconnected process and, equivalently, from the anyon
braiding. It is nontrivial that the disconnected process
contributes to the observables I and δS; for electrons or
bosons, disconnected Feynman diagrams never contribute
to observables [34].
The above findings are confirmed by numerically com-

puting δS (see Supplemental Material [41]). For ν ¼ 1=3,
δS approaches to −2e�I such that δS ¼ −1.8e�I at V ¼
60 μV at 50 mK and −1.99e�I at 80 μV at 50 mK.
Discussion.—The negative excess noise δS < 0 results

from the TVB process forWTVB
3→2. It is interpreted as follows.

At V ¼ 0, tunneling of a particlelike or holelike anyon
between edge 2 and edge 3 is thermally induced at QPC2,
causing the thermal noise Sð0; TÞ. Among those tunneling
events, thermal tunneling of a holelike anyon from edge 2
to edge 3 is weakened by a voltage-biased particlelike
anyon injected from edge 1 to edge 2, when the voltage V is
applied to edge 1. The weakening is due to the effective
braiding of the thermal anyon around the voltage-biased
anyon, which results in the partial cancellation between the
TVB and its partner disconnected process, WTVB

3→2 ∝
Re½eiπνðe2iπν − 1Þ� < 0. The weakening leads to the current
I > 0 and the reduction of the noise SðV; TÞ below Sð0; TÞ.
Note that δS < 0 at any V, although both the Poisson
process and the TVB (and its partner) contribute to δS
at e�V ≲ kBT.
By contrast, for electrons at ν ¼ 1, the Poisson process

determines I ¼ eWP
2→3 and δS ¼ 2e2WP

2→3, leading to
δS ¼ 2eI > 0 at e�V ≫ kBT. There is no topological link
by the braiding (e2iπν ¼ 1), and the TVB becomes a
disconnected process and fully canceled by its partner
disconnected diagram, WTVB

i→j ¼ 0. This is why the excess
noise δS ¼ 2eI of the electrons cannot be extrapolated
from Eq. (1) with e� → e.
Measurement of δS is feasible, as the setup was

experimentally studied in other contexts [30–32]: typically,
the tunneling probability of QPC1 and QPC2 is set to be
0.2, to have anyon tunneling [24]. We estimate I ∼ 50 pA
and δS ∼ 2.7 × 10−30 A2=Hz at 100 μV and ν ¼ 1=3,
which is detectable [30,47]. When δS is measured by
using Eq. (3), one has to experimentally determine temper-
ature T. The determination accuracy is within�3 mK [47].
Then, it is possible to obtain δS ¼ −2e�Ið1� 0.2Þ at
50 mK, V ¼ 80 μV, and ν ¼ 1=3.
Our study is generalized to edges with multiple channels

or reconstruction (see Supplemental Material [41]). For
example, at a filling factor of 4=3 or 7=3 [18,48], the
inner fractional edge channel corresponding to ν ¼ 1=3
interacts with copropagating outer channels and is weakly

backscattered at the QPCs. In this case, δS is still negative.
On the other hand, when the ν ¼ 1=3 edge channel
interacts with an unexpected counterpropagating mode
[49] due to edge reconstruction, δS is negative only when
the interaction is sufficiently weak [25,50]. The outer
channels at a filling factor of 4=3 or 7=3 are helpful in
this case, since they can screen the edge reconstruction. In
the above cases of multiple channels or edge
reconstruction, detection of δS < 0 may imply the frac-
tional statistics of the quasiparticles deviating from
Laughlin anyons due to the interchannel interactions.
The quasiparticles become closer to Laughlin anyons for
weaker interactions.
In summary, we predict the negative excess auto-

correlation noise δS < 0, a signature of the Abelian frac-
tional statistics or the new process (TVB) not existing
with fermions or bosons. It is unusual that the excess
autocorrelation noise of electrical tunneling current is
negative [21,51].
We suggest that autocorrelation noise can provide

signatures [52,53] of identical-particle statistics. This is
different from the conventional approach [54–56] of
detecting particle bunching or antibunching with
Hanbury Brown–Twiss cross-correlations. It is unnatural
to interpret the negative excess autocorrelation noise as
deviation (anyonic partial bunching [5–9]) from fermionic
antibunching and bosonic bunching, because it originates
from the TVB having no counterpart in fermions or bosons.
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