
 

Supersolidity around a Critical Point in Dipolar Bose-Einstein Condensates
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We explore spatial symmetry breaking of a dipolar Bose-Einstein condensate in the thermodynamic limit
and reveal a critical point in the phase diagram at which crystallization occurs via a second-order phase
transition. This behavior is traced back to the significant effects of quantum fluctuations in dipolar
condensates, which moreover stabilize a new supersolid phase, namely a regular honeycomb pattern with
high modulational contrast and near-perfect superfluidity.
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The crystallization of a liquid typically proceeds via a
first-order phase transition, associated with the release of
latent heat whereby fluid and solid phases coexist during
the freezing stage. While this scenario applies to a wide
range of classical and quantum systems, quantum mechani-
cal effects facilitate another form of coexistence, where
superfluidity and crystalline spatial order can simultane-
ously occur in a so-called supersolid phase. The coexist-
ence of such seemingly exclusive properties was first
pointed out by Gross [1], who suggested the possibility
of a density-modulated superfluid of weakly interacting
bosons described by a classical mean field. Subsequent
theoretical work [2–4] has since motivated an extensive
search for supersolidity in low-temperature helium experi-
ments [5,6] over the past several decades.
More recently, dilute ultracold atomic quantum gases

have emerged as a promising alternative [7–12] to observe
the elusive supersolid phase of matter. Indeed the sponta-
neous emergence of density modulations in the presence of
phase coherence has been realized by applying external
light fields to Bose-Einstein condensates in optical cavities
[13] and to implement synthetic spin-orbit coupling [14].
Experimental breakthroughs in realizing dipolar quantum
gases of dysprosium [15] and erbium [16] atoms have
raised promise for observing supersolidity arising from
tunable [17–19] atomic interactions. Indeed a series of
recent experiments have revealed a roton-maxon excitation
spectrum [20] in close analogy to the physics of superfluid
helium [21], and reported the observation of pattern
formation [22] as well as self-confined quantum droplet
states [23–26], arising from the interplay of short-range
collisions, dipolar interactions, and quantum fluctuations
[27,28]. Theoretical work has explored the formation of
regular quantum droplet arrangements under various con-
ditions [27,29–32] and the temporary coexistence of phase
coherence and density modulations along one spatial
dimension [32–34] has been reported recently. Yet, the
preparation of extended supersolid ground states remains
challenging, partly due to the expected first-order nature of

the crystallization transition and the associated discontinu-
ous increase of the modulation amplitude, which limits the
achievable phase coherence of the modulated state and
leads to the generation of high-energy excitations [22] upon
dynamically crossing the crystallization line.
Here, we investigate spatial symmetry breaking of

dipolar condensates in the thermodynamic limit and show
that the crystallization transition can become second-order
at a critical point in the underlying phase diagram. In this

FIG. 1. Iso-density surfaces of the three possible groundstates
(a)–(c) in dipolar Bose-Einstein condensates considered in this
work. Apart from an unmodulated superfluid (b), states with a
broken continuous translational symmetry (a), (c) exist in the
form of a triangular droplet lattice (c) and a honeycomb structure
(a). The quantum phase transitions between them can be first
order (d) or second order (e), as illustrated by the dependence of
the ground state energy on the modulation amplitude, A, of the
symmetry-broken state. Panels (d) and (e) show the energy
relative to that of the unmodulated superfluid (A ¼ 0) at (red
line) and close (blue lines) to the respective phase transition.
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case, spatial symmetry breaking occurs via the gradual
emergence of a two-dimensional density wave (see Fig. 1),
giving rise to an extended supersolid region in the under-
lying phase diagram. The origin of this behavior is traced
back to the dominant role of quantum fluctuations, which
can cancel kinetic energy contributions that would other-
wise lead to a first-order transition in typical crystallization
scenarios [35]. This competition of energy scales also leads
to the emergence of a new ordered phase—a honeycomb
structure [see Fig. 1(a)] that is solely stabilized by quantum
fluctuations and maintains near-perfect superfluidity.
We consider a zero-temperature quantum gas ofN dipolar

Bosonic atoms with a mass m which are harmonically
trapped along the dipolar polarization axis but otherwise
unconfined in the two-dimensional plane perpendicular to
it. The particles interact via zero-range collisions with a
scattering length as and via dipolar interactions, character-
ized by an associated length scale add. The condensate wave
function ψðrÞ of the atoms is normalized to unity and hence
ρ ¼ Njψ j2 defines the atomic density. In the limit of weak
interactions and upon expressing all spatial coordinates in
units of l ¼ 12πadd as well as scaling time by ml2=ℏ one
can express the total energy E of the condensate as

E
N

¼
Z j∇ψ j2

2
þ UðzÞjψ j2 þ 2

5
γN3=2jψ j5drþ EI

N
: ð1Þ

The first and second terms account for the kinetic energy of
the atoms and the axial trapping potential UðzÞ ¼ 1

2
ω2
zz2,

respectively, where ωz denotes the dimensionless trap
frequency in the units introduced above. The third contri-
bution describes the effects of quantum fluctuations to
leading order in the strength of the atomic interactions, as
given by the Lee-Huang-Yang (LHY) correction [36,37],
where γ ¼ ð4=3π2Þðas=3addÞ5=2½1þ 3

2
ðadd=asÞ2� [29]. This

expression is based on a local density approximation [38],
whose accuracy has been demonstrated through comparisons
with numerical results from quantum Monte Carlo simu-
lations [39] and comparisons to numerous recent experi-
ments [20,22,23,32–34]. Being the result of a perturbative
expansion, this term should generally be a small correction to
the individual mean field interaction of the atoms. Yet, it
can have profound effects on the condensate behavior for
specific situations, such as quantum gas mixtures, where
interactions of opposite signs can cancel overall mean field
effects [40,41], or the present case of dipolar bosons, whose
interaction features repulsive and attractive contributions
[27,42]. The corresponding mean field interaction energy

EI¼N2

Z
as
6add

jψðrÞj4þjψðrÞj2
8π

Z
Vðr−r0Þjψðr0Þj2dr0dr

ð2Þ

is composed of a contribution from zero-range collisions,
proportional to as, and long-range dipole-dipole interactions
with the interaction potential VðrÞ ¼ ð1 − 3z2=r2Þ=r3.
Without external confinement, the condensate can form a

self-confined quantum droplet ground state, which exhibits
an elongated shape and continually grows with increasing
particle number. The interaction between two such elon-
gated filaments [43] turns out to decrease upon increasing
their length. Indeed one can show that their interaction
eventually vanishes in the limit of infinitely extended
filaments and therefore precludes the emergence of any
discrete translational symmetry. A finite trapping potential
along the z axis is thus needed to facilitate the formation
of finite filaments, which generates long-range interactions
between them and thereby enables the formation of
extended droplet crystal ground states.
A reliable characterization of the associated quantum

phase transition requires a high numerical accuracy of the
ground state and its energy [44]. To this end, we minimize
Eq. (1) by starting from a modulated state whose crystal
structure and lattice constant are compatible with the
numerical box, on which we impose periodic boundary
conditions perpendicular to the trap axis. While the
subsequent imaginary-time evolution typically relaxes
the system to a local energy minimum defined by the
initial state, we find the global ground state by minimizing
the obtained energy with respect to the seeded lattice
constant and various different underlying structures.
As a suitable parameter to detect spatial ordering across

the fluid-solid phase transition we consider the density
contrast C¼ðjψmaxj2−jψminj2Þ=ðjψmaxj2þjψminj2Þ, defined
through the maximum and minimum density at the trap
center, z ¼ 0. C vanishes in the superfluid phase and
approaches unity for a crystal of disconnected droplets with
vanishing superfluidity. In the present case of weak inter-
actions, the superfluidity can be accurately estimated by
Leggett’s upper bound on the superfluid fraction [4]

fs ¼ min
θ

�Z ðR dxÞ2R jψðx̄; ȳ; zÞj−2dx dydz
�
: ð3Þ

Equation (3) generalizes Leggett’s derivation [4] for the
superfluid response of a rotating system to a linear Galilean
boost, whereby we take the minimum with respect to all
possible directions defined by the angle θ with x̄ ¼
x cos θ − y sin θ and ȳ ¼ x sin θ þ y cos θ. Figure 2(a)
shows these two quantities as we vary the relative strength
as=add of the zero-range and dipolar interactions for a fixed
trap frequency and a fixed average two-dimensional
density ρ2D ¼ N

R jψðrÞj2d3r=ðR dxdyÞ. For large values
of as=add, zero-range repulsion dominates such that the
lowest energy state is an infinitely extended superfluid
with C ¼ 0 and fs ¼ 1. However, as we decrease the ratio
as=add dipolar interactions cause an abrupt transition to a
droplet crystal with a high contrast. Such a first-order phase
transition is consistent with the behavior described by
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Gross [1,46] for the potential formation of a supersolid
within a mean field picture based on the Gross-Pitaevskii
equation for interacting bosons. More generally, it con-
stitutes the common scenario for translational symmetry
breaking in quantum as well as classical systems with more
than one spatial dimension [35].
Surprisingly, this behavior changes profoundly for a

different choice of the atomic density and is replaced by
a second-order quantum phase transition. As shown in
Fig. 2(b), the abrupt transition to a droplet crystal ground
state is replaced with the gradual emergence of a triangu-
lar density wave at the transition point, around which
one can find supersolid states with a broken continuous
translational symmetry and near unit superfluidity.
To gain a better intuition for the origin of this behavior, we

consider parameter values around the second-order phase
transition and approximate the ground state [11,12,47] by a
two-dimensional density wave described by [44]

ρðr⊥; zÞ ¼ ρ0ðzÞ
�
1þ A

X3
j¼1

cosðkj · rÞ
�
: ð4Þ

Here, A denotes the small amplitude of the triangular density
modulation defined by the three wave vectors, kj, that
form an equilateral triangle in the transverse plane with
k1 þ k2 þ k3 ¼ 0 and jkjj ¼ k. Our numerical solutions are
well approximated by this ansatz combined with a Thomas-
Fermi profile

ρ0ðzÞ ¼
3ρ2D
4σz

�
1 −

z2

σ2z

�
; σz ¼

�
ρ2Dðas=add þ 2Þ

2ω2
z

�
1=3

ð5Þ

for the axial density. Upon substituting these expressions into
Eqs. (1) and (2) we obtain

ΔE
N

¼ að2ÞA2 þ að3ÞA3 þ að4ÞA4 ð6Þ

for the energy difference per atom between the density wave
state described by Eq. (4) and the unmodulated superfluid
with A ¼ 0. The nature of the transition between them is
determined by the cubic term

að3Þ ¼ −
3

32

�
k2 −

15πγ

32

�
3ρ2D
4σz

�
3=2

�
: ð7Þ

The condensate ground state is readily found by minimizing
Eq. (6) with respect to A and k. The resulting ground state
behavior is critically determined by the magnitude and sign
of að3Þ. Without the LHY correction, γ ¼ 0, að3Þ is always
negative such that A ≥ 0 in the condensate ground state.
More importantly, the presence of a finite cubic termað3Þ < 0
implies that any transition to a symmetry broken state must
be a first-order transition [48], as illustrated in Fig. 1(d). This
scenario is prototypical for crystallization phenomena in
more than one spatial dimension, including not only super-
solid formation in condensates of soft-core bosons [49,50] or
Bose-Einstein condensates in optical cavities [51], but also
crystallization and self-organization in a wide range of
classical and quantum systems [52–55].
On the contrary, in the present case, beyond mean field

effects can profoundly change this picture, as the LHY
correction competes with the kinetic energy contribution to
the cubic term in Eq. (6). In fact, að3Þ vanishes if the spatial
modulation frequency of the symmetry-broken ground state
satisfies

k2 ¼ 15πγ

32

�
3ρ2D
4σz

�
3=2

: ð8Þ

In this case the total energy becomes an even function of the
order parameter A and the associated phase transition turns
into a second-order transition, consistent with the numeri-
cal results shown in Fig. 2(b). The different scenarios are
illustrated in Fig. 1 where we plot the energy difference as
function of A across the phase transition schematically.
Prior to the fluid-solid transition, the presence of the cubic
term gives rise to a local energy minimum that eventually
becomes negative at the transition to a symmetry-broken
ground state with a finite modulation amplitude. However,
under the condition [Eq. (8)], no such local minimum can
exist prior to crystallization and the symmetry-broken state
emerges with a vanishing modulation amplitude that grows
gradually upon crossing the second-order phase transition.
This simple variational approach provides a consistent

understanding of the underlying ground state phase diagram
shown in Fig. 3. Equation (6) and the above discussion
suggest that the effects of the LHY correction on the nature

FIG. 2. Density contrast and superfluid fraction as function of
as=add for a trap frequency ωz ¼ 0.08 and two different densities
ρ2D ¼ 62.5 (a) and ρ2D ¼ 156 (b). The insets show the corre-
sponding density profile at the respective parameters indicated by
the green arrows, where the color scale indicates the density ρðrÞ
relative to the maximum density ρmax ¼ maxrρðrÞ. In (b), the
contrast undergoes a continuous transition, giving rise to weakly
modulated supersolid states with a high superfluidity.
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of the phase transition are well controlled by the atomic
density. Indeed, upon varying ρ2D, one finds a second-order

quantumphase transition at a density ρðcrÞ2D , as indicated by the

red dot in Fig. 3. It corresponds to a density of ρðcrÞ2D ¼ 156 in
good agreement with the approximate variational result of

ρðcrÞ2D ¼ 140. On the other hand, the system is significantly
less sensitive to the strength of the longitudinal trap. In fact,
doubling the trap frequency used in Fig. 3 merely increases
the critical density by less than 10%. Consequently, super-
solid ground stateswith a high superfluidity can be generated
for a broad range of trap frequencies upon properly choosing
the dimensionless atomic density ρ2D ≈ 150.
The LHY-term in Eq. (7) also makes a sign change of

að3Þ possible, which yields a new ground state with A < 0.
Interestingly, this configuration does not lead into the
formation of a regular droplet crystal, but instead establishes
a honeycomb structure [see Fig. 1(a)] that behaves differently
from such previously discussed [8,9,30] ordered states.
Along the melting line (see Fig. 3), the two symmetry

broken phases are separated by the critical density ρðcrÞ2D
and feature an increasing contrast C away from it, as shown
in Fig. 4. However, the honeycomb ground state does not
disintegrate into a crystal of separate droplets but maintains a
connected density pattern. This corresponds to a remarkable
supersolid ground state that features a high contrast, while
maintaining a near-perfect superfluid flow along the boun-
daries of the honeycomb structure. The droplet crystal
phase and the superfluid honeycomb are separated by a
first-order transition line that ends at the critical point with

ρðcrÞ2D where three first-order transition lines meet and the
coexistence of all three ground state phases terminates.
The parameters considered above fall well into the

regime of achievable conditions in current experiments
[20,22,23,32–34]. For example dysprosium atoms have
dipolar interactions with add ≈ 7 nm and offer a broadly
tunable s wave scattering length, covering our considered

range of add=as. With an atomic mass of m ¼ 2.7×
10−25 kg, the defined spatial and temporal unit of dyspro-
sium condensates is l ¼ 0.26 μm and ml2=ℏ ¼ 0.18 ms,
respectively. The considered dimensionless trapping
frequencies of ωz ≈ 0.1 thus corresponds to a value of
560 Hz that is well achievable in cold atom experiments.
Around the critical point of Fig. 3 the dimensionless values
of ρ2D ≈ 150 and as=add ≈ 0.78 imply a condensate thick-
ness of σz ≈ 7 μm and an associated peak density of
3ρ2D=4σz ≈ 2 × 1014 cm−3 that are typical for cold atom
experiments. We note that Eq. (1) is valid for all considered
parameters including the vicinity of the critical point since
the condensate remains in the low-density regime of small
gas parameters [27,42]. Finally, Eq. (8) yields an estimated
periodicity of 2π=k ≈ 3.7 μm that is sufficiently small to
accommodate extended supersolid states with reasonable
atom numbers and can be further decreased by tightening
the longitudinal confinement.
In conclusion, we have investigated the crystallization

of partially confined dipolar Bose-Einstein condensates.
It turns out that the significant role of quantum fluctuations
in such systems can profoundly affect the underlying
crystallization mechanism as compared to current scenarios
for finite-range interacting bosons. Specifically, we have
shown that quantum fluctuations lead to the emergence of a
critical point around which spatial symmetry breaking takes
place via the gradual growths of a density wave and thereby
facilitates the formation of supersolid ground states with a
high superfluidity. Moreover, we have demonstrated a new
supersolid ground state that is solely stabilized by quantum
fluctuations and features a maximally modulated density
while maintaining near perfect superfluidity.
The quantum phase diagram, described in this Letter,

may also suggest viable schemes for the experimental

FIG. 3. Ground state phase diagram for a fixed trap frequency
ωz ¼ 0.08. The lines mark the numerically determined first-order
phase boundaries, while the red dot indicates the critical point
where coexistence of all three ground states terminates. FIG. 4. Contrast as a function of the condensate density ρ2D

along the melting line as obtained from Eqs. (5) and (6) for
ωz ¼ 0.08. The insets illustrate the density profile [Eq. (4)] of
the triangular and honeycomb supersolid states on both sides of
the critical point where C ¼ 0. The depicted surfaces show the
density ρ0ðx; yÞ ¼ ρðrÞjz¼0 at the trap center.
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preparation of symmetry-broken low-energy states via slow
parameter changes in the vicinity of the continuous phase
transition. The resulting dynamics of spatially confined
condensates, including homogenous systems in optical box
potentials [56], presents important questions that will also
shed light on the feasibility of such adiabatic preparation
schemes. Moreover, the thermodynamics of the described
crystallization scenario to elucidate the effects and interplay
of quantum and thermal fluctuation as well as the fate of the
different supersolid phases upon approaching the strong-
interaction regime where quantum fluctuations and lattice
defects may play a more prominent role all yield interesting
perspectives for future work.
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