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A class of spectral subgrid models based on a self-similar and reversible closure is studied with the aim
to minimize the impact of subgrid scales on the inertial range of fully developed turbulence. In this manner,
we improve the scale extension where anomalous exponents are measured by roughly 1 order of magnitude
when compared to direct numerical simulations or to other popular subgrid closures at the same resolution.
We find a first indication that intermittency for high-order moments is not captured by many of the popular
phenomenological models developed so far.
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Turbulence is ubiquitous in nature and in engineering
applications, and it is characterized by the presence of
intense non-Gaussian fluctuations on awide range of inertial
scales and frequencies. The main mechanism to be con-
trolled and eventually modeled is the energy transfer from
the large-scaleLwhere the flow is stirred to the small-scale η
where viscous effects are dominant [1–5]. The Reynolds
number is a measure of the separation between the two
scales, Re ∼ ðL=ηÞ4=3. For most applications, Re is too large
to allow the problem to be attacked by direct numerical
simulations (DNS) [4,6]. Similarly, fundamental problems
connected to the presence of anomalous scaling [1,7–9] in
the limit Re → ∞ cannot be easily studied using numerical
tools. In such a deadlock, the applied community resorts to
large eddy simulations (LES), a numerical approach that
restricts the Navier-Stokes equations to a range of scales (or
wave numbers) larger (smaller) than a given cutoff r > rc
(k < kc) and modeling all subgrid-scale (SGS) degrees of
freedomwith closures in configuration [3,10–12] or Fourier
[13–16] space. The aim is to achieve good accuracy for the
energy-containingmodeswithout paying toomuch attention
to those (inertial) scales that are fully resolved but also
unavoidably affected by the subgrid-scale closure. As a
matter of fact, most LES implementations successfully
reproduce large-scale dynamics k ≪ kc and are inaccurate
for the highest resolved wave number modes k ∼ kc. This
fact prevents the possibility for us to use LES models to
improve our understanding of multiscale velocity fluctua-
tions and/or the feedback of small-scale fluctuations on
global mean profiles. In particular, SGS models (SGSM)
perform very poorly concerning the properties of the
inertial-range scaling of velocity structure functions (SF),

SnðrÞ ¼ h½δru�ni ∼
�
r
L

�
ζn
; ð1Þ

where we defined the longitudinal increments δru ¼
½uðrþ xÞ − uðxÞ� · r̂, and we have assumed isotropy and
homogeneity. The exponents ζn in Eq. (1) are the key
quantities to predict the asymptotic statistics for large
Reynolds numbers, where r=L can be arbitrarily small.
On one side, experiments and numerical simulations have
provided much evidence that the scaling of SnðrÞ is
anomalous, i.e., different from the Kolmogorov 1941
(K41) prediction ζn ¼ n=3 [7–9,17,18]. On the other hand,
we do not have any first-principles derivations of ζn.
Furthermore, it is extremely difficult to get accurate mea-
surements of the exponents due to the concurrent require-
ments of having a large scaling range and large statistical
ensembles. As a result, we also lack the numerical and
experimental accuracy to distinguish among different phe-
nomenological models [19–26]. Finally, few assessments
exist of the robustness of the exponents with respect to the
small-scale dissipative mechanism [27–30].
In this Letter, we introduce a class of subgrid models to

minimize the impact of the SGS closure on the inertial
range: A sort of perfect energy-cascade sink that achieves a
much higher effective numerical resolution to study scaling
properties in turbulence. The idea was already presented in
Refs. [31,32] but was never applied and developed in the
way it is here. We introduce a self-similar buffer close to the
highest resolved mode, such as to have an ultraviolet
boundary condition for the energy cascade at high k which
is consistent with the existence of an infinitely extended
inertial range. The advantages with respect to other closures
are many. First, our model is time reversible, allowing the
formation of backscatter events, too. Second, it is a minor
modification of the high-wave-number dynamics, without
touching the Fourier phases and therefore with a minimal
impact on the formation of intense coherent events that are
believed to be responsible for anomalous scaling. Unlike
in Ref. [32], here we focus on high-Reynolds-number
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applications to assess the impact of the closure on the
inertial range properties. Furthermore, we expand the
protocol by considering also a new Fourier modulation
where the closure is applied such as to improve its
efficiency in adsorbing the energy cascade.
In the following, we show that our LES protocol is able

to obtain the same inertial range extension of a fully
resolved viscous DNS while saving roughly 1 order of
magnitude of resolution. As a result, considering also the
gain due to the possibility of relaxing the time step, the
improvement in the computational resources is larger than a
factor of 1000, opening the way towards increased accuracy
of measuring scaling exponents in turbulence, in both the
scaling range extension and the statistical error. Moreover,
we assess the universality issue with respect to the ultra-
violet dissipation mechanism by comparing the scaling
obtained with our SGS model with the ones measured in
DNS and experiments [8,9,17]. Another by-product is to
have a LES model that is accurate for small-scale evolution,
something important for engineering applications that
control extreme non-Gaussian events close to the subgrid
cutoff [33–36].
The model.—Let us consider the Fourier-space evolution

of the three-dimensional Navier-Stokes equations in a
periodic box of size L ¼ 2π and resolved with N grid
points per direction and maximum wave number in all
directions given by kmax ¼ N=2:

ð∂t þ νk2ÞûkðtÞ ¼ T̂kðtÞ þ f̂ kðtÞ; ð2Þ

where ν is the viscosity, f̂ kðtÞ is the Fourier transform of the
external forcing, and T̂kðtÞ ¼ −ik · ½I − ðk ⊗ k=jkj2Þ�×
½Pk0 ûk0 ðtÞ ⊗ ûk0−kðtÞ� is the nonlinear term. We follow
Ref. [32] and we replace the viscous term on the lhs of
Eq. (2) with a nonlinear inertial closure that imposes a
perfect self-similar Kolmogorov-like spectrum in a k
window close to the ultraviolet cutoff kmax:

EkðtÞ ¼ ðk=kcÞ−ð5=3ÞEkcðtÞ; kc ≤ k ≤ kmax; ð3Þ

where EkðtÞ ¼ 1
2

P
jkj¼k jûkðtÞj2. The LES equation for the

resolved velocity field equipped with the fixed-spectrum
SGS model can be written using a Lagrangian multiplier
λkðtÞ [31],

∂tûkðtÞ ¼ T̂kðtÞ þ f̂ kðtÞ − γkλkðtÞûkðtÞ; ð4Þ

where we have removed the viscosity, and γk is a projector
which selects the range of scales where the subgrid closure
acts: γk ¼ 0 if k ≤ kc and γk ¼ 1 if kc < k < kmax (sharp
SGSM). It is easy to realize that in order to satisfy Eq. (3),
we can impose dEk=dt ¼ ðkc=kÞ5=3dEkc=dt and choose
λkðtÞ to be

λkðtÞ ¼
1

2

TkðtÞ − ðk=kcÞ−5=3TkcðtÞ
EkðtÞ

; ð5Þ

where TkðtÞ is the transfer function: TkðtÞ ¼P
jkj¼k û

�
kðtÞT̂kðtÞ. In order to mitigate the sharp transition

across the SGS kc, we also explored another protocol where
the percentage of constrained modes grows linearly from 0
at kc to 1 at kmax. To do that, we define a (quenched)
probability to apply the SGS model at any given wave
number as follows (smooth SGSM):

γk ¼
�
0 if k < kc;

1 with prob Pk ¼ k−kc
kmax−kc

if kc ≤ k < kmax:
ð6Þ

In this way, only a fraction of modes ðk − kcÞ=ðkmax − kcÞ
will be affected by the constraint for any given shell k, such
that we move from fully unconstrained dynamics (for
k < kc) to fixed-spectrum dynamics (for k ¼ kc) with
continuity (see inset of Fig. 1 for a graphical scheme of
the Fourier-space support of the projector γk for both sharp
and smooth SGSM cases). We also anticipate that in order
to minimize the transition across kc, we will need to keep a
small residual viscosity ν even when using the self-similar
closure. This is unavoidable due to the fact that the closure
acts on a finite range of scales and cannot exactly mimic the
SGS dynamics at infinite Reynolds number.
Results.—We compare the LES data obtained at a res-

olution of 10243 with the two different DNS resolutions:
one identical to the LES (DNS × 1) and one taken from a
state-of-the-art study at 81923 collocation points [8]
denoted (DNS × 8). All runs are forced with a white-in-
time Gaussian forcing acting at kf ∈ ½1; 1.5� for DNS × 1

and a kf ∈ ½1; 3� for DNS × 8. More details on the
numerical setup can be found in Table I. In Fig. 1, we

FIG. 1. Energy spectra for the simulations in Table I. The
curves are shifted vertically for the sake of presentation. The gray
area marks the range of wave numbers where the closure acts.
Inset: 2D sketch of the Fourier-space support where γk ¼ 1. Left
and right panels represent, respectively, the sharp SGSM and
smooth SGSM cases.
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show the spectral properties of all data. Our closure
reproduces the same extension of the scaling range of
DNS × 8 and considerably extends the one obtained with
DNS × 1. We obtain an inertial behavior for all k in the
LES model without the viscous range of scales needed with
standard viscosity in DNS × 8.
Anomalous scaling of high-order SF.—To assess the

scaling properties in a quantitative way, we measure the
local scaling exponents

ξnðrÞ ¼
d logSnðrÞ
d logðrÞ ; ð7Þ

where in the presence of pure power laws, we must
have ξnðrÞ ¼ const ¼ ζn.
By measuring where ξnðrÞ is constant, we have an

unbiased definition of the inertial range extension, and
we can assess scale by scale the quality of our data. In
particular, the intermittency and scale-dependent correc-
tions from Gaussian behavior can be measured by the
deviation from zero of ΔnðrÞ ¼ ξnðrÞ=ξ2ðrÞ − n=2, as seen
by expressing the generalized flatness in terms of the
second-order SF:

FnðrÞ ¼
SnðrÞ

½S2ðrÞ�n=2
∼ ½S2ðrÞ�f½ξnðrÞ=ξ2ðrÞ�−ðn=2Þg:

In Fig. 2, we show ξ2ðrÞ for our two SGSM closures and
compare them with the same quantity measured on
DNS × 1 and DNS × 8. As shown for the spectral case,
LES data have a much larger extension of scaling than
DNS × 1, matching the DNS obtained with an 8-times-
larger resolution (DNS × 8).
Despite the existence of a plateau for ξ2ðrÞ for all data,

the constraint ξ2ðrÞ → 2 for r → 0 makes the jump from
inertial to viscous values too big, and it is very difficult to
quantitatively distinguish the K41 scaling from any inter-
mittent phenomenological model as, e.g., the SL model
[22], the Yakhot model [26], and the model proposed by Oz

based on spontaneous symmetry breaking of dilation
invariance and random geometry [24,37,38]. To be more
accurate, in Fig. 3 we show the scaling of the generalized
flatness (inset) and of the scale-by-scale ratio ΔnðrÞ þ
n=2 ¼ ξnðrÞ=ξ2ðrÞ (main panel) for n ¼ 4; 6. Here, a
Kolmogorov-like nonanomalous scaling corresponds to a
constant value n=2 for all r. As one can see, the deviation
from the Kolmogorov scaling is now evident, and much
more importantly, our SGSM closures are able to develop
an inertial range as extended as the DNS × 8 case, if not
even larger. Moreover, the smooth SGSM closure is a bit
better than the sharp SGSM case. We consider these results
a clear demonstration that the SGS model developed here
can be considered a sort of infinite-Reynolds-number
closure. Considering the fact that by using the smooth
SGSM closure we can achieve the same accuracy for local
exponents of a DNS with 8-times-larger resolution, we
estimate a gaining factor 83 for the spatial grid, which
together with the less stringent Courant-Friedrichs-Lewy
condition for the time integration ∼ε−1=3k−2=3max leads to a
total gain close to a factor of 1000. In Table II, we present a
summary of the scaling properties of FnðrÞ from where it is
clear that the SGS models agree with the DNS × 8 and with
the prediction made by the SL, Yakhot, and EO models for
moment n ¼ 6; 8, while for the largest achievable order
n ¼ 10, the numerical data are more intermittent than all
three phenomenological models (see also the Supplemental
Material [39]).
A few comments are now in order. First, it is useful to

preserve a very small viscous term in Eq. (4) in order to
have a smooth transition across kc. This is implemented in
our approach, keeping a term νk2ûkðtÞ with a very small ν
as shown in Table I. It is clear from Fig. 3 that even by
optimizing ν, there exists in the SGSM a pseudoviscous
range (extended over a few grid points) where scaling
breaks down. This is unavoidable because our closure is
acting in the Fourier space and does not enforce any pure

TABLE I. Simulations: N is the number of collocation points in
each spatial direction, kc the smallest wave number where the
SGS closure acts, kmax the maximum wave number evolved by
the dynamics, ϵ the mean energy injection, and ν the kinematic
viscosity. Re ¼ ϵ1=3L4=3=ν is the Reynolds number with L ¼ 2π.
T is the duration of simulations in units of the eddy turnover time
ϵ−1=3L2=3.

N kc kmax ϵ ν T Re

Sharp
SGSM

1024 340 512 3.0 8.0 × 10−5 8.5 2.1 × 105

Smooth
SGSM

1024 340 512 3.0 4.0 × 10−5 8.5 4.2 × 105

DNS × 1 1024 � � � 340 2.5 8.0 × 10−4 12 2.0 × 104

DNS × 8 8192 � � � 3861 1.5 4.4 × 10−5 3.4 3.0 × 105

FIG. 2. Log-lin plot of ξ2ðrÞ vs r. Solid and dashed lines
indicate the SL ζ2 ¼ 0.69 and K41 ζ2 ¼ 2=3 predictions,
respectively. In gray, we indicate the range of scales where the
closure (5) is acting. Error bars are comparable with symbol
sizes.
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scaling for the high-order SFs. The existence of a small
bump for the local slopes around the transition from the
viscous to inertial range is also present in experimental data
at high Reynolds number [9]. On the other hand, the
efficiency in extending the anomalous scaling range is good
evidence that to capture intermittency the SGSM must
maintain the correct phase correlations [40], which is one of

the main added values of Eq. (5). Second, the smooth
projector recipe is not unique, and one can imagine many
different ways to enforce the transition from modes that
evolve according to their Euler dynamics (k < kc) to those
that feel the spectral constraint. In particular, once the
controlled buffer is introduced and it is large enough, one
might imagine even avoiding the dealiasing protocol and
keeping kmax ¼ N=2 as done here. The effects of intro-
ducing dealiasing are minor and discussed in Fig. 2 of the
Supplemental Material [39]. We now discuss the compari-
son with two other popular ways to enhance the effective
Reynolds numbers. In Fig. 4, we compare the flatness
obtained from a DNS with hyperviscosity [29,41] or from a
Smagorinsky SGS model [10,11,36] with the one proposed
here. Notice that the hyperviscous data are only qualita-
tively as good as the smooth SGSM, as shown by the
fact that the former has a less extended plateau with respect
to the latter. There is no doubt that the closure (5) is
superior to both the Smagorinsky and hyperviscous mod-
els. Finally, we mention that from Eq. (4), one can define
a Galilean-invariant [42] SGS energy transfer: ΠðxÞ ¼
∂iujðxÞ

R
dkγkλkeik·xiki=k2ûj;k, which is nonpositive defi-

nite and therefore able to reproduce backscatter events.
Conclusions.—We have shown that a self-similar SGS

model is able to extend the anomalous scaling to almost the
entire range of resolved scales. This protocol reduces the
computational cost by a factor of 1000 compared to a fully
resolved DNS, with the same inertial range extension. The
agreement between the scaling observedwith the SGSMand
that measured by DNS and experiments supports the
universality of the inertial range dynamics with respect to
the energy-absorbing mechanism at small scales. Thanks to
the unprecedented accuracy in the determination of the
scaling properties, we have been able to find a small
discrepancy between the numerical data and the predictions
by some of the most popular phenomenological models
[22,24,26] for high order moments. It remains an open key
question to check if our closure remains accurate also at
higher resolution. If this is indeed the case, we have a chance
to make a discontinuous improvement in the assessment of
scaling properties in homogeneous and isotropic turbulence.

FIG. 3. Log-lin plot of ξnðrÞ=ξ2ðrÞ for (a) n ¼ 4 and (b) n ¼ 6
for SGSM and DNS data. K41 and SL predictions are given by
the dashed and solid lines, respectively. EO and Yakhot models
are very close to SL predictions for these two moments (see
Table II). In gray we indicate the range of scales where the closure
(5) is applied. Inset: log-log plot of FnðrÞ vs r (same symbols as
the main panel). SL and K41 scaling are given by the solid and
the dashed lines, respectively. In all figures, errors are evaluated
from the scatter of 40 configurations.

TABLE II. Δ̄n þ n=2 obtained as a fit of ξnðrÞ=ξ2ðrÞ for r ∈ ½0.03∶0.9�L for smooth SGSM and DNS × 8, and for
r ∈ ½0.15∶0.9�L for DNS × 1. Errors for the numerical data refer to the sum among statistical fluctuations and the
variations considered by fitting in the first or second half of the scaling range (see the Supplemental Material [39] for
more details). The last three columns give the prediction from the She-Leveque (SL) [22], Yakhot [26], and Eling-
Oz (EO) [24] models, where the last two have been fitted to have the value for n ¼ 4 identical to the smooth SGSM
case. Errors in the Yakhot and EO models are estimated by fixing their free parameter to match either the maximum
SGSM value 1.843þ 0.015 or the minimum 1.843–0.015 for n ¼ 4; see the Supplemental Material [39].

SGSM DNS × 1 DNS × 8 SL Yakhot EO

n ¼ 4 1.843(15) 1.828(25) 1.824(18) 1.839 1.843(15) 1.843(15)
n ¼ 6 2.537(38) 2.501(78) 2.485(39) 2.555 2.563(38) 2.586(35)
n ¼ 8 3.092(30) 3.034(147) 2.982(56) 3.176 3.186(66) 3.257(58)
n ¼ 10 3.504(81) 3.440(230) � � � 3.727 3.730(96) 3.875(83)
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Our model outperforms other common closures such as the
Smagorinsky model or hyperviscous DNS. Fully time-
reversible models might be of theoretical interest for the
application of the chaotic hypothesis [43]. In addition to the
self-similar properties, another advantage of our SGS
closure is that the phase dynamics is left untouched.
Because of its generality, the closure can be applied to a
broad set of other flow configurations such as rotating,
stratified, or magnetohydrodynamic turbulence, including
stiff problems as the kinematic dynamo in the limit of small
Prandtl numbers [44]. Similarly, one might imagine appli-
cations to wall bounded flows where small-scale anisotropy
is negligible [45] by imposing scaling laws on the spectral
degrees of freedom in planes parallel to the wall (homo-
geneous directions), with properties dependent on the
distance from the wall.
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