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The coupling of sediment transport with the flow that drives it allows rivers to shape their own bed.
Cross-stream fluxes of sediment play a crucial, yet poorly understood, role in this process. Here, we track
particles in a laboratory flume to relate their statistical behavior to the self-organization of the granular bed
they make up. As they travel downstream, the transported grains wander randomly across the bed’s surface,
thus inducing cross-stream diffusion. The balance of diffusion and gravity results in a peculiar Boltzmann
distribution, in which the bed’s roughness plays the role of thermal fluctuations, while its surface forms the
potential well that confines the sediment flux.
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When water flows over a layer of solid grains, the shear
stress it exerts on the sediment’s surface entrains some of
the grains as bed load [1,2]. Eventually, the flow deposits
the traveling grains downstream [3,4]. The balance of
entrainment and deposition deforms the sediment bed
[5], thus changing the flow and the distribution of shear
stress. This coupling, through various instabilities, gener-
ates sand ripples in streams [6,7], rhomboid patterns on
beaches [8], alternate bars in rivers [9], and, possibly,
meanders [10–13].
More fundamentally, the coupling of water flow and

sediment transport is the mechanism by which alluvial
rivers choose their own shape and size, as they build their
bed out of the sediment they carry [14–17]. To do so,
however, rivers need to transport sediment not only down-
stream, but also across the flow [18,19]. On a slanted bed,
of course, gravity will pull traveling grains downwards;
it thus diverts the sediment flux away from the banks of
a river [20,21]. What mechanism opposes this flux to
maintain the river’s bed remains an open question. Here, we
suggest that the inherent randomness of sediment transport
plays a major role in the answer.
The velocity of bed-load grains fluctuates as they travel

over the rough bed, and the bed-load layer constantly
exchanges particles with the latter [22], thus calling for a
statistical description of bed-load transport [23,24]. At its
simplest, this theory involves a population of noninteract-
ing grains traveling, on average, at velocity Vx, close to
the grain’s settling velocity [4,25]. If n is the surface density
of traveling grains, the downstream flux of sediment reads
qs ¼ nVx. As long as sediment transport is weak, the
traveling grains do not interact significantly, and their
average velocity Vx can be treated as a constant. Both
the streamwise and cross-stream velocities, nonetheless,
fluctuate significantly [22,26].
A little-investigated consequence of these fluctuations is

the cross-stream dispersion they induce [27,28]. Indeed, as

it travels downstream, a grain bumps into immobile grains
like a ball rolling down a Galton board. The random
deviations so induced turn its trajectory into a random walk
across the stream [26,29]. We thus expect a cross-stream,
Fickian flux to bring traveling grains towards the less
populated areas of the bed (lower n). Mathematically,

qd ¼ −ld
∂qs
∂y ; ð1Þ

where qd is the fluctuation-induced Fickian flux, y is the
cross-stream coordinate, and ld is the diffusion length,
which scales with the amplitude of the trajectory fluctua-
tions. Tracking resin grains in a water flume, Seizilles et al.
found ld ≈ 0.03ds (ds is the grain size) [26]. To our
knowledge, neither the cross-stream flux of grains qd
nor its consequences on the bed’s shape have been directly
observed.
To measure the Fickian flux qd, we set up a particle-

tracking experiment in a 3-cm-wide flume [Fig. 1(a); see
also detailed experimental methods in Ref. [30] ]. We inject
into the flume a mixture of water and glycerol (density
ρ ¼ 1160 gL−1, viscosity η ¼ 10 cP) at a constant rate
(Table I). We use a viscous fluid to keep the flow laminar
(Reynolds number below 250). Simultaneously, and also at
a constant rate, we inject sieved resin grains (median
diameter ds ¼ 827 μm, density ρs ¼ 1540 gL−1). After a
few hours, the sediment bed reaches its equilibrium shape.
This equilibrium, however, is a dynamical one: the flow

constantly entrains new grains and deposits other ones onto
the bed. A camera mounted above the flume films the
traveling grains through the fluid surface, at a frequency of
50 fps [Table I, Fig. 1(b), and the movie in Supplemental
Material [30]]. Although made of the same material, the
grains are of different colors, which allows us to locate
them individually on each frame. We then connect their
locations on successive frames to reconstruct their trajec-
tories with a precision of 0.1ds [30–32].
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The resulting trajectories are mostly oriented down-
stream, as expected, but they also fluctuate sideways, like
in previous bed load experiments [22,26,27]. These fluc-
tuations cause them to disperse across the stream as they
travel downstream [Fig. 2(a)]. We now distribute all our
trajectories into 25 logarithmically spaced bins, according
to their travel length x − x0 (x0 is the starting point of
each trajectory), and calculate the variance σ2y for each bin
[Fig. 2(b)]. We find that, for trajectories longer than a few

grain diameters, the cross-stream variance increases linearly
with the travel distance. Seizilles et al. [26] interpreted a
similar relationship as the signature of a randomwalk across
the stream (they also found that the autocorrelation of the
cross-stream trajectories decays exponentially). Accordingly,
we now fit the relation σ2y ¼ 2ldðx − x0Þ to our trajectories
(beyond 3ds downstream of their starting point). To estimate
ld, we treat the above relation as the reduced major axis of
our dataset: 2ld ¼ stdðσ2yÞ=stdðx − x0Þ, where the standard
deviation is over bins, that is, over the data points of Fig. 2(b).
Using our entire dataset (typically 3 × 104 trajectories per
run), we get

ld ¼ ð0.024� 0.002Þds; ð2Þ

where theuncertainty is the expected standarddeviationofld.
This value is close to previous measurements in pure water
[26], although it is most likely affected by the physical
properties of the fluid and of the grains.
That diffusion expresses itself through a length scale,

as opposed to a diffusion coefficient, betrays its athermal
origin: it is the driving (here, the flow) that sets the
timescale. This property relates bed-load diffusion to the(a)

(b)

FIG. 1. (a) Experimental setup and notations. Two Plexiglas
panels confine the flume laterally. The x axis is aligned with the
flow. (b) Part of the camera’s field of view (background picture)
with superimposed grains trajectories (red lines). Dots and arrows
indicate beginning and end of trajectories, respectively. Data from
experimental run no. 1.

TABLE I. Experimental parameters. Run no. 1 serves as an
example in all figures.

Run
no.

Sediment input
(grains s−1)

Fluid input
(Lmin−1)

Slope
(%)

Tracking time
(min)

1 42.4 0.83 0.88 93
2 37.4 1.12 0.79 100
3 21.3 0.87 0.77 181
4 19.7 1.13 0.69 68
5 19.2 1.11 0.71 124

(a)

(b)

FIG. 2. Cross-stream dispersion of the traveling grains. (a) 34
trajectories from run no. 1, with starting point shifted to origin.
(b) Cross-stream variance of shifted trajectories. Dashed black
line: Linear relation with diffusion length ld fitted to data
[Eq. (2)]. Inset: ld fitted independently to individual runs. Error
bars show uncertainty.
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diffusion induced by shearing in granular materials and
foams [33–35].
Although fluctuations disperse the traveling grains

across the stream, most grains travel near the center of
the channel [Fig. 1(b)]. According to Eq. (1), such a
concentration should induce a Fickian flux towards the
flume’s wall. At equilibrium, we expect gravity to counter-
act this flux; for this to happen, the bed’s cross section
needs to be convex. In fact, the bed cannot maintain a flat
surface: in this configuration, the fluid-induced shear stress
would be weaker near the sidewalls, and so would the
intensity of sediment transport. Bed-load diffusion would
then bring more grains towards the bank, thus preventing
equilibrium. In the following, we investigate the interplay
between gravity and diffusion.
We use an inclined laser sheet to measure the elevation

profile of the bed [Fig. 1(a) and Supplemental Material
[30]]. The laser source is fixed on a rail which allows it to
scan the flume over 20 cm. We evaluate the tilt of the rail by
scanning a tub of still milk; it is less than 0.03%. At the end

of an experimental run, we switch off the fluid input; this
brings the bed to a standstill in a matter of seconds. We then
let the fluid drain out of the flume, and use the laser scanner
(i) to measure the bed’s downstream slope S (Table I)
and (ii) to spatially average the bed’s cross section, hðyÞ
[Fig. 3(a)]. We find that the sediment bed is convex for all
our experimental runs. Its surface gently curves upwards
near the center of the flume, and steepens near the walls.
This observation indicates that the sediment bed has
spontaneously created a potential well to confine the
traveling particles in its center.
Unfortunately, measuring the flow depth based on the

deflection of the laser beam proved imprecise. Instead, we
used finite elements to solve the Stokes equation in two
dimensions [30,36], namely,

η∇2u ¼ ρgS; ð3Þ
where u is the streamwise velocity of the fluid. We further
assume that the free surface is flat, that the viscous stress
vanishes there (∂u=∂z ¼ 0, where z is the vertical coor-
dinate), and that the fluid does not slip at the bed’s surface
(u ¼ 0). Knowing the bed’s downstream slope S, we then
adjust the elevation of the water surface to match the fluid
discharge. In addition to the flow depth, this computation
provides us with the velocity field of the flow [Fig. 3(a)],
and thus the intensity of the viscous stress τ that the fluid
exerts on the bed [Fig. 3(b)]. We find that, like the sediment
bed, the viscous stress varies across the flume; it reaches a
maximum at the center of the channel, and vanishes where
the bed’s surface joins the walls—as expected for a laminar
flow.
We now wish to relate the flow-induced stress to sedi-

ment transport. To measure the latter, we divide the flume’s
width into 50 bins and count the trajectories that cross
a constant-x line within each bin, per unit time. This
procedure yields a sediment-flux profile (Supplemental
Material [30]). Repeating it for 10 different lines across
the channel, we obtain an average sediment-flux profile,
qsðyÞ [we keep only data points for which the relative
uncertainty is less than one, Fig. 3(c)]. In accordance with
the distribution of trajectories in Fig. 1(b), the sediment
flux appears concentrated around the center of the flume.
It vanishes quickly away from the center, much before the
fluid-induced stress has significantly decreased.
Following Shields, we now relate the sediment flux

to the ratio of the fluid-induced stress to the weight of a
grain θ [37]:

θ ¼ τ

ðρs − ρÞgds
; ð4Þ

where g is the acceleration of gravity. The Shields param-
eter is an instance of the Coulomb friction factor; strictly
speaking, on a convex bed like that of Fig. 3(a), its
expression should include the cross-stream slope ∂h=∂y
[17]. In our experiments, however, we find that this

(a)

(b)

(c)

FIG. 3. (a) Average cross section of the flume during run no. 1.
Beige: Sediment layer. Blue color map: Downstream flow
velocity calculated with finite elements. (b) Flow-induced shear
stress on the bed. (c) Sediment flux measured by grain tracking.
Error bars indicate measurement uncertainty (Supplemental
Material [30]).
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correction is insignificant where sediment transport is mea-
surable. Accordingly, we content ourselves with the
approximate expression of Eq. (4).
Plotting the intensity of the sediment flux as a function of

the force driving it, in the form of the Shields parameter θ,
shows a well-defined threshold [Fig. 4(a)]: no grain moves
when the fluid-induced stress is too weak to overcome its
weight, but the sediment flux increases steeply past this
threshold. This emblematic behavior, apparent in a single
experimental run, is confirmed by the superimposition of our
five experimental runs [Fig. 4(a)]. Indeed, within the vari-
ability of themeasurements, the five corresponding transport
lawsgather around a common relation,whichwemay treat as
linear above the threshold Shields stress θt [26]:

qs ¼ q0ðθ − θtÞ; ð5Þ
where q0 is a constant of order ðρ − ρsÞg=η. Fitting
this transport law to our complete dataset, we get q0 ¼
544� 48 grains s−1 cm−1 and θt ¼ 0.167� 0.003, where

the uncertainty is the standard deviation over individual runs.
These values correspond to a typical transport law in a
laminar flow [2,26].
The local intensity of the flow-induced stress controls the

local flux of sediment—just as expected. More surprisingly,
perhaps, the sediment bed needs to adjust its shape so that,
in total, the flume conveys the sediment discharge that we
impose at the inlet. We suggest that it does so by balancing
the Fickian flux qd, which pushes the traveling grains away
from the flume’s center, with the gravity-induced flux qg,
which pulls them towards the lowest point of the bed’s
surface. As a first approximation, we may assume that the
latter is proportional (i) to the cross-stream slope of the bed
and (ii) to the local intensity of the downstream flux of
sediment qs. Mathematically,

qg ¼ −αqs
∂h
∂y ; ð6Þ

where α is a dimensionless constant. Although conducted
in air, the experiments of Chen et al. [21] suggest that it
should be of order unity or less.
At equilibrium, the gravity-induced flux qg needs to

match the Fickian flux qd. Adding Eqs. (6) and (1) yields
the Boltzmann equation, which we readily integrate into an
exponential distribution:

qsðyÞ ¼ q0 exp

�
−
hðyÞ
λB

�
; ð7Þ

where q0 is an integration constant, and λB ¼ ld=α is the
characteristic length of the distribution. Distinctively, this
distribution relates two quantities (qs and h) that depend on
the space coordinate y, but the latter does not explicitly
appear in its expression. This, however, does not make it a
local relationship: unlike the transport law of Eq. (5), it
features an integration constant which depends on the sedi-
ment and water discharges of each experiment. These
properties, typical of a Boltzmann distribution, appear when
plotting the bed elevation as a function of the sediment
discharge [Fig. 4(b), inset]. For each experiment, the data
points trace twice the same line in the semilogarithmic space,
as they go from one side of the channel to the other, but the
position of this line depends on the experimental run.
To bring all our experiments into the same space, we now

divide Eq. (7) by its geometrical mean. This rids us of
the integration constant q0, and turns the distribution of
sediment transport into

qsðyÞ
hqsig

¼ exp

�
−
hðyÞ − hhia

λB

�
; ð8Þ

where h·ig and h·ia are the geometric and arithmetic means,
respectively. Within the variability of our observations, the
data points from all experimental runs gather around a

(a)

(b)

FIG. 4. (a) Local sediment transport law. Marker types indicate
individual experimental runs. Solid line: Experimental run no. 1.
Dashed black line: Equation (5) with q0 ¼ 544 grains s−1 m−1

and θt ¼ 0.17. (b) Distribution of sediment flux with respect to
bed elevation. Colors and markers similar to (a). Dashed black
line: Bolztmann distribution [Eq. (8)] with λB ¼ 0.10 mm.
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straight line, which we interpret as Eq. (8). Fitting the
characteristic length λB to our entire dataset, we find
λB ¼ 0.10� 0.01 mm, where the uncertainty is the stan-
dard deviation over individual runs. More tellingly, this
value corresponds to

λB ¼ ð0.12� 0.02Þds; ð9Þ
showing that the characteristic length compares with the
grain size. Returning to the definition of λB, we find that the
constant α in Eq. (6) is about 0.2, in agreement with
previous estimates [21].
Although temperature plays no part here, the structure of

Eq. (8), as well as its derivation, makes it a direct analog
of the Boltzmann distribution, where the cross-stream
deviations of the grains’ trajectories play the role of thermal
fluctuations. Pursuing this analogy, we suggest that the
scale of λB is inherited from the roughness of the under-
lying granular bed, which we believe causes the cross-
stream deviations—a mechanism reminiscent of, but
somewhat simpler than, the shear-induced diffusion
observed in granular flows [33–35]. To support this
hypothesis, however, we would need more experiments
with different grains and fluids.
The familiarity of the Boltzmann distribution should not

obscure the peculiarity of the phenomenon we report here.
We naturally expect that random walkers will distribute
themselves in a potential well according to this distribution;
what is remarkable here, however, is that the system
spontaneously chooses the shape of the potential well to
match the transport law. This is possible only because the
sediment bed is made of the very particles that roam over
its surface.
A practical consequence of this self-organization is that

sediment transport cannot be uniform across a flume, thus
prompting us to reevaluate the transport laws measured in
this classical setup. (If we were to assume uniformity in our
experiments, we would underestimate q0 by a factor of 2.) In
thecontext of drygranular flows, the traditional rotating-drum
experiment has been challenged on similar grounds [38].
Much remains to be done to understand how the bed

builds its own shape. To do so, we will have to drop the
equilibrium assumption. A first step in that direction was to
demonstrate theoretically that the cross-stream diffusion of
sediment could generate a distinctive instability, but the
associated pattern has not been observed yet [39]. More
generally, the consequences of bed load diffusion on the
morphology of rivers, and ultimately on that of the land-
scapes they carve, belong to uncharted territory.
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