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We report on experimental observations of coexistence and interactions between nonlinear states with
different polarizations in a passive Kerr resonator driven at a single carrier frequency. Using a fiber ring
resonator with adjustable birefringence, we partially overlap nonlinear resonances of two orthogonal
polarization modes, achieving coexistence between different nonlinear states by locking the driving laser
frequency at various points within the overlap region. In particular, we observe coexistence between
temporal cavity solitons and modulation instability patterns, as well as coexistence between two
nonidentical cavity solitons with different polarizations. We also observe interactions between the
distinctly polarized cavity solitons, as well as spontaneous excitation and annihilation of solitons by a
near-orthogonally polarized unstable modulation instability pattern. By demonstrating that a single
frequency driving field can support coexistence between differentially polarized solitons and complex
modulation instability patterns, our work sheds light on the rich dissipative dynamics of multimode Kerr
resonators. Our findings could also be of relevance to the generation of multiplexed microresonator
frequency combs.
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Dissipative solitons are localized structures that emerge
in far-from-equilibrium nonlinear systems due to mecha-
nisms of self-organization [1,2]. They manifest themselves
in a myriad of different contexts, such as biology [3,4],
chemistry [5,6], hydrodynamics [7,8], and nonlinear optics
[9–14]. In contrast to their counterparts in conservative
systems [15], dissipative solitons typically correspond to
isolated attractors whose characteristics (e.g., shape, width,
and amplitude) are fixed by the external parameters of the
system [13,16]. While often the case, the attractors need not
be unique: a given set of external parameters can in
principle admit coexistence between distinct dissipative
solitons with different characteristics. The possibility of
such coexistence—as well as the rich new dynamics and
interactions that can ensue—was first revealed in the
context of the complex quintic Ginzburg-Landau equation
by Afanasjev et al. [17], and has subsequently been
identified across a number of physical systems [18–23].
Temporal cavity solitons (CSs) are a particular breed of

dissipative solitons that manifest themselves in coherently
driven passive nonlinear optical resonators [24–26]. They
are pulses of light, able to recirculate indefinitely in a
resonator without changes in shape or energy. They have
attracted significant attention in the context of high-Q
microresonators [27] due to their role in the generation
of broadband coherent frequency combs [28–34].
Moreover, their fundamental characteristics and dynamics
have been extensively investigated using macroscopic fiber
ring resonators [35–40].

For typical external parameters, CSs correspond to
unique (but translation-invariant) attractors of the under-
lying dynamical system. This implies that, while several
CSs can simultaneously coexist [25,41], all of them are
expected to exhibit identical characteristics. Recent studies
have shown [42,43], however, that this expectation can fail
when two (or more) fields with different frequencies drive
the resonator: each driving field can then sustain CSs
with distinct characteristics. In particular, researchers have
used polychromatic driving fields to achieve coexistence
between CSs associated with different spatial or polariza-
tion mode families of a microresonator [42], achieving
compact sources of dual- and even triple-combs.
Interestingly, even a monochromatic driving field can

allow for the coexistence of distinct CS states, provided the
driving field simultaneously excites several modes of the
resonator. Such a situation has been theoretically argued
[44] and experimentally demonstrated [45] to arise when
the Kerr nonlinear phase shifts are sufficiently large so that
neighbouring resonances of the same mode family partially
overlap. One may similarly envision that, if the nonlinear
resonances of two different (spatial or polarization) mode
families overlap, a single monochromatic driving field
can simultaneously support nonidentical CSs associated
with the two different modes. Averlant et al. have indeed
theoretically predicted that a birefringent resonator driven
with a suitably polarized monochromatic field could engen-
der coexistence between two differentially polarized CSs
with different peak powers and temporal durations [46].
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Such coexistence has not, however, been experimentally
observed.
In this Letter, we report on the first experimental

observations of the coexistence of distinct nonlinear states
associated with different polarization modes in a mono-
chromatically driven passive Kerr resonator. In addition to
coexistence between two distinct CSs, we also observe
coexistence between CSs and modulation instability (MI)
patterns (both stable and unstable), and, importantly,
resolve complex interactions between the different non-
linear structures. Besides corroborating prior theoretical
predictions [46,47], our experiments show that monochro-
matically driven multimode Kerr resonators can display
rich and previously unexplored dissipative dynamics that
could be of applied relevance to the generation of multi-
plexed microresonator frequency combs [42]. More gener-
ally, our findings may help better understand the dynamics
of dissipative localized states manifesting themselves in
different two-component vectorial systems [48–51], and
help provide insights into other situations where distinct
dissipative solitons coexist [17–23].
We consider a ring resonator made of a single-spatial-

mode waveguide with anomalous dispersion and weak
birefringence. The resonator admits two mode families that
correspond to the two orthogonal principal polarization
modes of the waveguide. We assume the resonator is driven
with a monochromatic laser polarized such that both modes
can be simultaneously excited. In the limit of high finesse,
the evolution of the slowly varying intracavity electric field
envelopes E1;2 of each polarization mode is described by
two coupled mean-field equations similar to the celebrated
Lugiato-Lefever equation (LLE) [46,52]. In dimensionless
form, the equations read [53]:

∂E1;2ðt; τÞ
∂t ¼

�
−1þ iðjE1;2j2 þ BjE2;1j2 − Δ1;2Þ

þi
∂2

∂τ2
�
E1;2 þ S1;2: ð1Þ

Here, t is a slow time variable that describes the evolution of
E1;2 on a scale of the cavity photon lifetime, while τ is
a corresponding fast time that describes the envelopes’
temporal profile over a single round trip. The terms on
the right-hand side of Eq. (1) describe, respectively, the
resonator losses, the self-phase-modulation, the cross-
phase-modulation (XPM) [54], the resonator frequency
detuning, the group-velocity dispersion, and the coherent
driving. The normalized driving field amplitudes S1;2
are given by S1 ¼ S cosðχÞ and S2 ¼ S sinðχÞ, where the
driving ellipticity χ determines the projection of the total
normalized driving field amplitude S ¼ ffiffiffiffi

X
p

(X is the
normalized driving power) into each of the polarization
modes.
Equation (1) neglects linear mode coupling, group-

velocity mismatch, coherent four-wave mixing mode

interactions, and higher-order dispersive and nonlinear
terms. With these assumptions, the two fields are coupled
exclusively via XPM, with the coefficient B describing the
strength of that coupling. (In the simulations that will
follow, we set B ¼ 1.3 [53].) The good agreement between
our experiments and simulations justifies the use of this
simplified model.
Due to the birefringence of the resonator, the two

polarization modes are associated with different resonance
frequencies. Accordingly, the frequency detunings Δ1;2
between the monochromatic driving laser and each of
these resonances is in general different, i.e., Δ1 ≠ Δ2.
We denote the frequency separation of the resonances as
δΔ ¼ Δ1 − Δ2 and assume Δ1 > Δ2 [see Fig. 1(a)].
The coexistence of different nonlinear states depends

nontrivially on the cavity parameters [46]. Through exten-
sive simulations, we find that uneven driving (χ ≠ π=4)
and large resonance separation (δΔ ≫ 1) are favorable for
experimental observation. Accordingly, in the experiments
that will follow, we set δΔ ¼ 16, X ¼ 40 and χ ¼ 0.15π,
such that polarization modes 1 and 2 are strongly and
weakly driven, respectively. [Note that δΔ ≫ 1 justifies the
omission of linear mode coupling and coherent four-wave
mixing terms in Eqs. (1)]. Figure 1(a) shows the predicted
total intracavity power jE1j2 þ jE2j2 for these parameters
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FIG. 1. Cavity resonances and examples of coexisting non-
linear states calculated for X ¼ 40, δΔ ¼ 16, χ ¼ 0.15π, and
B ¼ 1.3. (a) Total intracavity power (jE1j2 þ jE2j2) correspond-
ing to the cw steady-state solutions of Eqs. (1). Solid black lines
correspond to stable solutions, black dotted lines to homo-
geneously unstable solutions, and the red dashed lines represent
MI unstable solutions. (b)–(d) Field profiles for each polarization
mode at selected detunings [orange dashed-dotted vertical lines in
(a)], obtained from numerical simulations of Eqs. (1). Coexist-
ence between: (b) a stable MI pattern and a CS, Δ1A ¼ 15.5;
(c) an unstable MI pattern and a CS, Δ1B ¼ 16.5; and (d) two
different CSs, Δ1C ¼ 23.
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as Δ1 (and hence Δ2 ¼ Δ1 − δΔ) is varied, obtained by
solving the continuous wave (cw) steady-state solutions of
Eqs. (1). As can be seen, the differentially tilted resonances
overlap, suggesting they can be simultaneously excited
with a monochromatic driving field.
The regions where different nonlinear states coexist

can be qualitatively estimated based on the range of CS
existence in the absence of XPM coupling. [Simulations
show that this scalar estimation is accurate (albeit not exact)
for our parameters, but becomes increasingly unreliable as
the resonance separation δΔ → 0.] The blue shaded rec-
tangle in Fig. 1(a) represents the range of detunings over
which CSs can manifest themselves for polarization mode 1
in the scalar approximation. This range overlaps with the
regions where polarization mode 2 is expected to sustain
MI patterns (shaded red rectangle) or CSs (shaded green
rectangle). We find that coexisting nonlinear states manifest
themselves in the overlap regions. Indeed, in Figs. 1(b)–1(d),
we show field profiles for each polarization mode at selected
detunings [indicated with orange vertical lines in Fig. 1(a)],
obtainedvianumerical simulationofEqs. (1).AtΔ1A ¼ 15.5,
a CS in polarization mode 1 coexists with a near-periodic and
stable MI pattern in polarization mode 2 [Fig. 1(b)]. When
increasing the detuning to Δ1B ¼ 16.5, the MI pattern in
mode2becomesmore aperiodic andunstable (fluctuating as a
function of slow time t), yet continues to coexist with the CS
in mode 1 [Fig. 1(c)]. At Δ1C ¼ 23, two nonidentical CSs
belonging to different polarization modes coexist [Fig. 1(d)].
Note that, while the nonlinear states are predominantly
polarized along one of the polarization modes, they exhibit
a small component along the orthogonal polarization mode
due to XPM.
For experimental demonstration, we used an 85-m-long

fiber-ring resonator (see Fig. 2) made out of standard single-
mode fiber with group velocity dispersion and nonlinear
coefficients of β2 ¼ −20 ps2 km−1 and γ ¼ 1.2 W−1 km−1,
respectively. The fiber is laid in a ring configuration and
closed on itself with a 95∶5 coupler. The resonator also
includes a 99∶1 tap-coupler for monitoring the intracavity

dynamics, as well as a polarization controller (PC) that
allows us to systematically adjust the total birefringence
of the cavity, and hence control δΔ. The resonator has a
measured finesse of F ≈ 40, and we synchronously drive it
with flat-top nanosecond pulses carved from a 1550 nm
narrow linewidth cw laser. A PC before the input coupler is
used to adjust the amount of power projected into each
polarization mode, i.e., to control χ.
To observe coexistence between different nonlinear

states, we lock the cavity detuning at different values using
the method demonstrated in [55]. In short, a PID-controlled
feedback loop keeps the power level of a low intensity
counterpropagating frequency shifted signal fixed, which
in turn locks the detuning. At the 1% tap-coupler cavity
output, we use a PC and a polarizing beam splitter to
separate the intensities of the two orthogonal polarization
modes of the cavity for individual observation. Two optical
spectrum analyzers are used to measure the spectral
features of the different nonlinear states, while real-time
dynamics are captured using 10 GHz amplified photo-
diodes combined with a 40 GSa=s oscilloscope. Finally,
CSs are excited by mechanically perturbing the resonator.
Red curves in Fig. 3 show experimentally measured,

polarization-resolved spectra at cavity detunings similar to
those used in Figs. 1(b)–1(d). Also shown are numerically
simulated spectra (blue curves) corresponding to the tem-
poral profiles in Figs. 1(b)–1(d). Figures 3(a) and 3(b) show
spectra measured at a detuning where simulations predict
[cf., Fig. 1(b)] CSs to coexist with a stable MI pattern.
The spectrum of polarization mode 2 indeed displays
strong spectral sidebands (primary combs) characteristic

FIG. 2. Schematic illustration of our experimental setup. MZM,
Mach-Zehnder amplitude modulator; EDFA, Erbium-doped fiber
amplifier; PC, polarization controller; PD, photodetector; AOM,
acousto-optic modulator; PID, proportional-integral-derivative
controller.
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FIG. 3. Experimentally measured (red curves) and numerically
simulated (blue curves) spectra of the intracavity field in
polarization modes 1 and 2, at detunings similar to those used
in the simulations in Fig. 1 (i.e., Δ1A, Δ1B, and Δ1C). The spectra
are indicative of coexistence between the following: (a)–(b) a
near-periodic and stable MI pattern and a CS, (c)–(d) an aperiodic
and unstable MI pattern and a CS, (e)–(f) two nonidentical CSs.
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of a near-periodic and stableMI pattern [Fig. 3(b)], while the
spectrum of polarization mode 1 shows the sech2 shape
typical for a CS [Fig. 3(a)] [56]. Note how XPM coupling
results in the appearance of small sidebands on the CS’s
spectrum at the positions of the primary MI components.
As the detuning is slightly increased, the strong spectral
sidebands of the MI pattern broaden due to the aperiodicity
of the pattern [Fig. 3(d)] in good agreement with correspond-
ing simulations. Yet, the coexistencewith the CS spectrum is
still maintained on the orthogonal polarization [Fig. 3(c)].
By increasing the detuning lock point further, we are able

to sustain coexistence between two distinct CSs. Indeed,
Figs. 3(e) and 3(f) show that, at Δ1 ≈ 23, spectra measured
along both polarization modes exhibit the characteristic
sech2 shape. The spectral widths measured along the two
polarizations axes are noticeably different, as expected based
on the different detunings experienced by the corresponding
CSs [56]. Of course, this also suggests the solitons have
different temporal durations and peak powers [see Fig. 1(d)].
Additional temporally resolved measurements (not

shown) reveal that the CSs are trapped to amplitude inho-
mogeneities on the opposite edges of our driving pulses [57].
This observation can be readily understood in terms of
the group-velocity mismatch between the two polarization
modes. Specifically, because the two CSs travel at slightly
different group velocities, synchronizing the driving pulses
to the round trip time of one soliton would give rise to a
large synchronization mismatch relative to the other,
and hence cause the latter soliton to fall off the driving
pulse. To minimize synchronization mismatch, we carefully
adjust the pump pulse repetition time to be in between the
repetition times of the two solitons, allowing for their
trapping at the opposite edges of the pump pulse [57].
During transients, where the CSs are not yet pinned to

amplitude inhomogeneities, the group-velocity mismatch
can lead to collisions and other forms of interactions
between coexisting CSs. Our experiments show a rich
diversity of possible interaction scenarios, ranging from
the formation of bound states (as predicted in Ref. [47])
to soliton annihilation. Figure 4 shows an example of
a temporally resolved experimental measurement of CS

evolution dynamics. Here, Fig. 4(a) shows the total intra-
cavity intensity of two nonidentical solitons colliding and
annihilating each other. Polarization resolved measure-
ments shown in Figs. 4(b) and 4(c) clearly reveal that
the solitons are associated with different polarization
modes. Similar dynamics can be reproduced in our sim-
ulations when adding to Eqs. (1) an additional drift term
that represents the group-velocity mismatch between the
polarization modes.
It is interesting to note that we have been unable to

observe, both experimentally and numerically, coexistence
between CSs and fully unstable MI patterns with a
characteristically smooth spectrum. [The spectrum in
Fig. 3(d) shows significant residual structure.] We speculate
this is because large power spikes in the MI pattern destroy
any CSs in polarization mode 1 through XPM. Conversely,
such a spike perturbing the cw steady-state in polarization
mode 1 could also be envisaged to spontaneously excite
CSs in polarization mode 1. We have not, however,
observed such spontaneous excitation for the parameters
considered above, possibly due to the weakness of the MI
fluctuations in polarization mode 2. To strengthen the
fluctuations and hence test the underlying hypothesis,
we shifted the two resonances closer to each other
(δΔ ¼ 12.5), balanced the driving (χ ¼ π=4) and fixed
the detuning at a value of Δ1 ¼ 14.8. For these parameters,
mode 2 displays a smooth spectrum indicative of a fully
unstable MI field [Fig. 5(a)], while the spectrum of mode 1
(not shown) is void of any CS-like features. Yet remarkably,
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FIG. 5. Observation of spontaneous creation and destruction of
a CS by an unstable MI pattern. (a) Measured and simulated
spectrum for mode 2. The smoothness is indicative of a fully
unstable MI pattern. (b), (c) Experimentally measured (b) and
simulated (c) dynamics showing the spontaneous appearance and
disappearance of a CS in mode 1. The erratic CS motion observed
in simulations occurs over timescales that cannot be resolved in
experiment [note the different axes in (b) and (c)].
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time resolved measurements show that CSs can intermit-
tently emerge from the cw background. Figure 5(b) shows
an example of such a scenario: a CS can be seen to
spontaneously appear and persists for hundreds of round
trips before again spontaneously disappearing. Numerical
simulations qualitatively reproduce the behaviour, with an
example scenario shown in Fig. 5(c).
In conclusion, we have reported on experimental obser-

vations of coexistence and interactions between nonlinear
states with different polarizations in a monochromatically
driven passive Kerr resonator. In addition to experimentally
confirming earlier theoretical predictions [46,47], our work
shows that the simultaneous excitation of several cavity
modes with a single carrier frequency can engender very
rich dissipative dynamics. The ability to control the
frequency separation between two modes (as demonstrated
in our Letter) paves the way for further studies of such
dynamics, and will allow for the systematic exploration
of questions such as the following: what are the exact
parameter conditions required for coexistence of nonlinear
states? How does linear mode coupling affect the cavity
dynamics? Can the coexistence of nonlinear states be
linked to the well-known symmetry breaking behaviour
of driven Kerr resonators [58–60]? In addition to expanding
our fundamental knowledge of dissipative solitons and
multimode Kerr resonators, answering questions such as
these could impact on the design of single-source, multi-
output microresonator frequency combs.
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