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Metasurface thin films created from arrays of structured optical elements have been shown to perform
spatial filtering of optical signals. To extend their usefulness it is important that the symmetry of their
response with changes to the in-plane wave vector kp → −kp can be tailored or even dynamically tuned. In
this Letter we use a general theory of metasurfaces constructed from nondiffracting arrays of coupled metal
particles to derive the optical transfer function and identify the physical properties essential for asymmetry.
We validate our theory experimentally showing how the asymmetric response of a two-dimensional
(planar) metasurface can be optically tuned. Our results set the direction for future developments of
metasurfaces for optical signal processing.
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Metasurfaces are artificial thin films created from sub-
wavelength arrays of structured elements engineered to
respond in ways not found in natural materials [1–3]. An
optical metasurface with a transmission that depends on the
wave vector k of the incident light field has potential as a
highly compact spatial frequency filter [4–6]. A spatial
filter performs optical signal processing by modifying the
spatial Fourier harmonics of an image to highlight edges or
remove specific features [7], a process akin to performing
mathematical operations on the images. Likewise, differ-
ence operations or derivatives of the optical wave front by
metasurfaces enhance edges, make phase gradients visible
[8,9] or can be combined to form second derivatives and
Laplacian operations [10,11]. Recently it was suggested
that multilayers of metasurfaces could be used for forward
and inverse optical Fourier transforms [12] enabling com-
plex mathematical operations such as differentiation and
integration [13–15] to be performed in Fourier space [16] as
well as solving differential equations [17]. Such multilayer
metasurfaces can form asymmetries such that the trans-
mittance depends on which face of the metasurface is
illuminated [18,19].
The properties of an optical device can be described by

the optical transfer function (OTF), which is the Fourier
transform of the amplitude point-spread function of an
optical system [20]. The OTF represents the response to
plane waves at different angles of incidence, providing a
useful representation of the properties of optical metasur-
faces [5]. When the response arises from a periodicity
greater than the wavelength of light, the OTF becomes a
nonlocal representation in k space [6] and the device will
exhibit diffraction. Metasurfaces that impose wavelength-
scale periodic phase gradients across the transmitted
beam [21–24] are equivalent to phase gratings [25] that

preferentially diffract into a single order, giving the
appearance of refraction that disobeys Snell’s law [26].
Such diffractive phase surfaces, or holographic filters [7],
are well known and form the basis of computer generated
holograms [27] with volume holograms demonstrating
optical differentiation [28]. Spatial filtering exploiting
the k dependence of diffracting materials was used some
decades ago to realize phase contrast imaging with hard
x rays [29,30] with imaging properties also described using
the OTF [31]. A synthesis between metasurfaces and
diffraction gratings was shown experimentally to redirect
a light beam under all-optical control [32], giving the
appearance of an optically controlled blaze on the grating.
To be useful in optical signal processing, it is important

that metasurfaces can replicate a large class of spatial
filters. Filtering low spatial frequencies requires a null
response at normal incidence, where k · rp ¼ 0 for vectors
rp in the plane, a property achievable using dark mode
resonances [4,5,33]. More difficult is creating a metasur-
face with an asymmetric response that distinguishes
between −k · rp and þk · rp. Here, we derive the physical
conditions required for the asymmetric response of two-
dimensional nondiffracting metasurfaces, where the arrays
of structured elements have subwavelength periodicity. We
derive the OTF for an arbitrary arrangement of resonant
nanostructures and classify terms based on their symmetry.
This approach highlights the physical properties that are
essential for asymmetry and lays the foundations for more
complex metasurface designs. It was argued recently on the
basis of reciprocity that two-dimensional surfaces cannot
exhibit such asymmetry because they are mirror symmetric
[6]. However, the conditions we derive, necessary for
asymmetry, include the effects of polarization and are
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precisely those that violate scalar reciprocity. We demon-
strate asymmetric behavior experimentally with a non-
diffracting metasurface and show how it can be selected
optically.
The OTF Ōðkx; kyÞ of a metasurface is the complex

function that maps the incident electric field to the trans-
mitted field (Fig. 1). It describes the optical response in
the x-y plane to the incident wave vector kI ¼ ðkx; ky; kzÞ.
The OTF can be written as a matrix to account for changes
in the polarization of the transmitted light field [5]. We base
our derivation of the OTF on the electrostatic eigenmode
method for describing localized surface plasmon (LSP)
resonances in subwavelength coupled systems. This method
provides a simple algebra that encompasses most of the
physics of nanoscale resonant systems [34,35]. The ampli-
tude an of the LSP excited by the electric field E0eikI ·rn

incident on a single plasmonic particle located at position rn
isan ¼ fnðωÞpn · E0eikI ·rn wherefnðωÞ ≈ −An=ðω − ωn þ
iΓn=2Þ describes the frequency dependence about the res-
onance at frequency ωn with a full width at half maximum
Γn. The vectorpn is proportional to the dipole moment of the
resonance and kI is the incident wave vector.
In the presence of N − 1 other nanostructures within the

cell or meta-atom of the metasurface, the electric fields of
the LSPs couple, modifying the excitation amplitudes an.
The new amplitudes ãm can bewritten as linear combinations
of the old ones, ãm ¼ P

N
n MmnanwhereMmn is amatrix that

mixes amplitudes together [Fig. 1(b)]. The dipole moment
of this excitation is ãmpm. The electric field scattered into
the far field in direction r̂ then takes the form [5]

Em ¼
XN

n

ē ·pmðpn ·E0ÞCmneikI ·rn−iks·rm; ð1Þ

where we have set ē ¼ k2eikrð1 − r̂ r̂Þ=4πϵ0r. The coupling
term Cmn¼MmnfnðωÞ¼½δmn−fmðωÞGmn�−1fnðωÞ, which
depends on the matrix inverse ½…�−1, is symmetric on the
interchange of the indices, since the dipole interactionGmn of
the evanescent fields between particles that we consider here
is symmetric Gmn ¼ Gnm [35].
We now consider the metasurface created from a periodic

array of meta-atoms and show that metasurfaces with
subwavelength periodicities behave like uniform thin films.
We assume identical unit cells of N coupled metal particles
in the x-y plane. If the array period is da;b ¼ adxx̂þ bdyŷ
with a and b integers, dx the array period in the x̂ direction,
and dy the period for ŷ, then we can write rm ¼ da;b þ sm
where sm is a small vector from the center of the unit cell to
the mth nanostructure and the sum over m is only over the
structures within the unit cell [Fig. 1(b)]. Then we sum
Eq. (1) to yield the total far-field electric field

E ¼
X

a;b

X

m;n

ē ·pmðpn ·E0ÞCmneikI ·sn−iks·sm−iqs·da;b ; ð2Þ

where qs ¼ ks − kI is the scattering vector. Since all unit
cells in the periodic array are identical the sum over the

array separates into two factors that are generally very
small, except when qs · x̂dx ¼ 2nπ or qs · ŷdy ¼ 2mπ
where n and m are integers [5]. These two expressions
are equivalent to the diffraction equation for two dimen-
sions. For example, writing kI ¼ kðx̂ sin θI − ẑ cos θIÞ, and
likewise for ks, then qs · x̂dx ¼ kdxðsin θs − sin θIÞ ¼ 2nπ
or sin θs ¼ sin θI þ nλ=dx, which is the diffraction equa-
tion with k ¼ 2π=λ. This equation has been described
erroneously as a generalization of Snell’s Law [21].
For periodicities much smaller than the wavelength of

light, the dominant scattering occurs only for n ¼ m ¼ 0

for which qs · d̂ ¼ 0 where d̂ is a vector in the x-y plane.
This condition implies that ks ¼ kI so that the incident
beam is merely transmitted through the periodic array (the
zero diffraction order). Alternatively we can have specular
reflection since this also satisfies ðks − kIÞ · d̂ ¼ 0.
The total scattered electric field is then given by

E ¼ NaNb

X

m;n

ē ·pmðpn ·E0ÞCmneikI ·ðsn−smÞ

¼ NaNbē · Ōðkx; kyÞ ·E0; ð3Þ
for NaNb unit cells in the array. The optical transfer
function Ōðkx; kyÞ is

Ōðkx; kyÞ ¼
X

m;n

pmpnCmneikI ·ðsn−smÞ ð4Þ

m

Mmn

n
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metasurface
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FIG. 1. The metasurface concept for spatial filtering. (a) The
incident light field has a complicated k-space decomposition and
polarization distribution Ein that is transformed by the metasur-
face into another k-space and distribution Eout. (b) The metasur-
face consists of an array of identical cells [indexed by integers
ða; bÞ] composed of coupled resonant nanoparticles. The center
of the unit cell is located by the vector da;b and a particle in the
cell by vector sn relative to the cell center. The arrows on each
particle represent the dipole moments of the resonant modes.
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that involves the outer product of the two vectors pmpn—in
effect, pm is operated on from the left and pn is operated on
from the right. For simplicity we have omitted ē from the
definition of the optical transfer function, although it can be
easily included as required. The outer product of two
vectors such as pmpn is known as a dyadic. In the context of
the OTF the dyadic represents a change in the direction of
polarization of the incident beam and the factor pmpn is
equivalent to a component of the Jones matrix M in optics
[36]. For example, an incident beam with amplitude EI is
scattered with polarization related to pmðpn ·EIÞ.
To make asymmetric dependences on kI explicit, we

note that the coupling is symmetric Cmn ¼ Cnm and rewrite
the double sum in Eq. (4) as

Ōðkx; kyÞ ¼
X

m

p2
mp̂mp̂mCmm þ

X

m;n>m

Cmnpmpn

× ½ðp̂mp̂n þ p̂np̂mÞ coskI · ðsn − smÞ
þ iðp̂mp̂n − p̂np̂mÞ sinkI · ðsn − smÞ�; ð5Þ

where pn ¼ pnp̂n separates out the magnitude pn of the
eigenmode dipole moment from its orientation p̂n. The
only k dependence of the OTF is through the phase factors
in Eq. (5), with coskI · ðsn − smÞ being symmetric and
sinkI · ðsn − smÞ asymmetric under interchange kI →
−kI . In particular, an asymmetric response requires
the coefficient in front of the sine term to satisfy
p̂mp̂n ≠ p̂np̂m.
Thus we conclude that a metasurface consisting of an

array of identical cells of subwavelength periodicity may
demonstrate an asymmetric response only if the constitu-
ents in the cell have dipole resonances that are misaligned.
This is the key result of our Letter. This result contradicts
the analysis of Kwon et al. [6] who used a scalar form of
reciprocity to argue that transmission asymmetry with the
in-plane k vector could be obtained only by breaking both
horizontal and vertical mirror symmetry. However, the most
general form of the reciprocity relation [37], attributed to de
Hoop [38], requires the Jones matrix Mf of the forward
propagation to equal the transpose of the matrix for reverse
propagation MT

r ¼ Mf. The assumption in Ref. [6] is
that the forward and reverse propagation are the same,
implying that MT

f ¼ Mf. This condition is violated in
Eq. (5) precisely when the Jones matrix components
p̂mp̂n ≠ p̂np̂m are unequal, which breaks the symmetry
and destroys scalar reciprocity in our two-dimensional
system. For example consider pairs of LSP modes with
dipole moments misaligned and the incident light polar-
ized. The transfer function is P̂o · Ōðkx; kyÞ · P̂i where an
input linear polarizer P̂i sets the direction of the incident
field and an output linear polarizer P̂o controls the
measured field. If ψn and ϕn are the angles between pn
and the incident and the exit polarizers respectively, then
the term in brackets of Eq. (5) is

2½a coskI · ðsn − smÞ þ ib sinkI · ðsn − smÞ�; ð6Þ

where a ¼ ðcosϕm cosψn þ cosϕn cosψmÞ=2 and b ¼
ðcosϕm cosψn − cosϕn cosψmÞ=2. This expression shows
an asymmetry, provided b ≠ 0.
To demonstrate that such asymmetric behavior is physi-

cally possible we perform an experiment on a metasurface
created from a subwavelength array of three identical
nanorods supporting LSP resonances [Fig. 2(a)]. This
configuration mimics the Wheatstone bridge (WB) circuit
in electronics [39] that performs first-order difference
operations enabling phase sensing [8]. Although such a
design may not be optimum for optical signal processing,
we use it here to demonstrate both symmetric and asym-
metric response in the transmitted intensity controlled by
the orientation of a polarizer. Such effects have not
previously been reported.
The WB circuit consists of three gold nanorods, each

40 nm wide, 30 nm thick, and 100 nm long [Fig. 2(b)] on a
borosilicate glass substrate. Two parallel rods (labeled 1
and 2) are oriented in the ŷ direction with a center-to-center
distance d ¼ 200 nm and the third “bridge” nanorod is
oriented in x̂ with its bottom edge aligned with the tops of
the two parallel rods. This placement controls the strength
G of the coupling between the rods that affects the degree
of asymmetry in the response. The metasurface consists of
arrays of WB circuits with a period of 400 nm in both
directions. The experiment is performed using the con-
figuration in Fig. 2(c). Collimated white light passed
though a polarizer, aligned at angle ψ to nanorod 3, is
incident on the metasurface at an angle θ to the surface
normal, giving an in-plane wave vector kx ¼ k sin θ.

100 nm

y

x

(c)

(b)

θ

polarizer

incident beam

polarizer

metasurface

microscope
lens

spectrometer

ψ

ŷ

z

x

y

ψ

-G G

1 2

3
(a)

FIG. 2. Experiment to demonstrate asymmetric optical transfer
functions. (a) The plasmon “Wheatstone bridge” of three iden-
tical gold nanorods showing the predominant coupling. The
arrows represent the induced dipole moments for the polarizer
angle 90° < ψ ≤ 180°; (b) SEM image of an example circuit prior
to etching away the underlying film; (c) the experiment configu-
ration. The metasurface is a subwavelength periodic array of the
structures in (b). The light beam is incident on the metasurface at
angle θ.
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The transmitted light is filtered by a second polarizer,
aligned with the parallel rods, and then measured by a
spectrometer.
An example transmission spectrum is shown in Fig. 3(a),

measured at three incidence angles θ, expressed in terms of
the in-plane wave vector kx. The first polarizer was set to
angle ψ ¼ 45°. The spectra near the resonance at λ ¼
686 nm show increasing transmission as kx changes sign
from negative to positive, providing a clear demonstration
of an asymmetry in the metasurface response. The nor-
malized transmission at the resonance as a function of kx
for four different polarizer angles is shown by experimental
data points in Fig. 3(b). The direction of the asymmetry is
controlled by the polarizer and changes sign when ψ ¼
45° → 135°.
The asymmetry can be modeled using the OTF of the

metasurface. With p ¼ jpj being the magnitude of the
LSP eigenvector dipole moment and the resonance factor
fðω ¼ ωRÞ ¼ i2A=Γ≡ ifR being purely imaginary at
resonance, the OTF from Eq. (4)

P̂o · ŌðkxÞ · P̂i ¼
i2p2fR

1þ 2f2RG
2
fcosψ cos θfRG sinðkxd=2Þ

þ sinψ ½1þ 2f2RG
2cos2ðkxd=2Þ�g; ð7Þ

where the orientation of the input polarizer is P̂i ¼
cosψ cos θx̂þ sinψ ŷ and the output polarizer is P̂o ¼ ŷ
[40]. The cos θ term in P̂i arises from the polarizer being
attached to the tilt arm in the experiment, as shown in
Fig. 2(c). The OTF contains a term antisymmetric in kx,
which is selected by ψ ¼ 0 and a term symmetric in kx
obtained with ψ ¼ π=2. Since most experiments measure
intensities proportional to jOTFj2, all negative quantities
become positive and the asymmetry is not usually observed
directly, as in the case of the WB experiments of Eftekhari
et al. [8] and described by Roberts et al. [5]. However, the
cross term in the intensity depends on 2 cosψ sinψ ¼
sin 2ψ that remains predominantly antisymmetric in kx,
selected with the polarizer at angles ψ ¼ �π=4. Indeed, the
polarizer also determines the direction of the asymmetry
with kx with a magnitude that depends on fRG. The
theoretical result as the square of Eq. (7) is included with
the experimental results in Fig. 3(b). The theoretical curves
are matched to the data by adjusting two parameters only,
such that fRG ¼ 0.24 and 2p2fR ¼ 1.00. For ψ ¼ 45° and
135° the data show the expected asymmetry with kx and
excellent agreement with theory. As discussed [40], we
would expect similar asymmetry with no output polarizer.
The asymmetry has its origin in the direction of the

incident electric field on nanorod 3. Referring to Fig. 2(a),
for the polarizer set in the range 90° < ψ ≤ 180°, the
induced dipole moment in nanorod 3 leads to positive
coupling G to nanorod 2 (dipoles adding) and negative
coupling to nanorod 1 (dipoles opposing), that acts to drive
the nanorods out of phase. This phase shift results in partial
cancellation of the transmitted light at normal incidence
kx ¼ 0. An additional phase shift is applied to these
nanorods by changing the angle of incidence (changing
kx) that either reduces or enhances the interference accord-
ing to the sign of kx. The situation is reversed when
0° ≤ ψ < 90° because the induced dipole moment on
nanorod 3 is reversed, which changes the direction of
asymmetry with kx. This behavior is consistent with
numerical simulations [40].
With the OTF we can simulate the response of the

metasurface to light from a pure phase object. Figure 3(c)
shows the simulated transmission images for light passing
through a biological-like sample. The optical parameters
for the sample are those from red blood cells in water [43].
Each image represents a field of view of 16 μm and we
assume the “optical system” has a spatial resolution of
400 nm. It is apparent that the contrast changes with the
orientation of the polarizer. The metasurface enables phase
imaging with an asymmetric contrast similar to differential
contrast imaging in more complex optical systems.
In this work we have demonstrated both symmetric and

asymmetric behavior of a plasmonic metasurface and pro-
vided physical criteria for creating more complex metasur-
face spatial frequency filters. When such subwavelength
structures are combined with complex holographic-type
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FIG. 3. (a) Experimentally measured spectra of light trans-
mitted through the metasurface for three incidence angles, ex-
pressed as in-plane wave numbers kx ¼ k sin θ. The incident
polarizer orientation was ψ ¼ 45°. (b) The response of the
metasurface to different spatial frequencies kx for four settings
ψ of the incident polarizer. The polarizer controls the symmetry
of the response and the sign of the asymmetry for ψ ¼ 45°, 135°.
The points are from experiment and solid lines are jP̂o · ŌðkxÞ ·
P̂ij2 derived from Eq. (7). (c) Simulations using Eq. (7) of the
metasurface response to light from pure phase objects represent-
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diffraction patterns we expect to create highly versatile and
compact devices for manipulating the information content in
images.
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