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We introduce a dynamical blockade phenomenon occurring in a nonlinear bosonic mode induced by a
combination of continuous and pulsed excitations. We find that the underlying mechanism for the blockade
is general, enhancing antibunching in the strongly nonlinear regime and inducing it in the weakly nonlinear
regime, without fine-tuning the system parameters. Moreover, this mechanism shows advantages over
existing blockade mechanisms and is suitable for implementation in a wide variety of systems due to its
simplicity and universality.
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Photon blockade is a nonlinear optical effect that
suppresses multiple-photon occupancy in a quantum mode
favoring the single photon state [1]. Strong photon block-
ade is a natural source for single photons, which are
essential for many rising technologies [2], such as quantum
communication [3,4], computation [5], and cryptography
[6]. Accessing the regime of photon blockade is also a
prerequisite for realizing quantum many-body phenomena,
e.g., the fractional quantum Hall effect [7], the superfluid to
Mott insulator transition [8–10], and the strongly correlated
Tonks-Girardeau gas [11] of photons.
While photon blockade has been realized in a variety of

physical systems, they operate with diverse mechanisms
and methods in different regimes of the system parameters.
Conventional photon blockade relies on the anharmonic
energy spectra of multiple photons in a nonlinear cavity [1].
Naturally, this mechanism is inefficient in the weakly
nonlinear regime where the corresponding spectral anhar-
monicity is smaller than the linewidth. Consequently, the
search for strong nonlinearity was the paradigm in this
field, and it took different routes to enhance nonlinearity,
e.g., by coupling photonic modes to single atoms [12,13],
quantum dots [14], superconducting qubits [15],
Rydberg atoms [16], mechanical resonators [17,18], two-
dimensional materials [19], and doubly resonant nano-
cavities [20,21]. Exciton polaritons in semiconducting
microcavities were also considered for inducing polariton
blockade [22], which was observed in recent experiments
[23,24] with however a limited antibunching due to limited
nonlinearity. The regime of strong nonlinearity was
recently accessed in exciton-polariton systems [25–27],
where the blockade physics would be exciting to study.

Alternatively, an interference effect between a pair
of coupled quantum modes can induce unconventional
photon blockade in the weakly nonlinear regime [28–32],
which was realized in recent experiments [33,34].
However, the emission correlation in the unconventional
blockade rapidly oscillates in time [28], requiring high
time resolution to observe, as well as making it unsuitable
for many applications. Other blockade mechanisms were
proposed, based on gain media [35], parametric inter-
actions [36,37], and time-modulated driving fields [38].
Also, proposals to enhance the unconventional blockade
have been based on phase-dependent tunneling [39],
multiple optomechanical modes [40], and continuous
bimodal driving [41,42].
Here, we introduce a mechanism for photon blockade

that can be dynamically induced universally in all regimes
of nonlinearity. In our scheme, we resonantly apply a
combination of both continuous and pulsed excitations to a
nonlinear bosonic mode. While either of the continuous or
pulsed excitations individually induces a conventional
blockade, their combined effect dramatically alters the
scenario with a much stronger photon blockade in certain
periodic time windows. The scheme is conceptually simple,
because the system involves only a single mode driven by
resonant optical fields that are routinely used in experi-
ments (e.g., Ref. [43]). The underlying mechanism is very
general and can be applied to any nonlinear bosonic
system. Moreover, the induced dynamical blockade has
advantages over the existing blockade mechanisms; e.g., it
shows no rapid oscillations in the unequal time correlation
function like the unconventional blockade shows and
presents improved single photon statistics compared to
that of the conventional blockade in its optimal operating
configuration. Thus, the dynamical blockade can be used in
preexisting single photon devices to improve their emission
efficiency (brightness) and single photon statistics, while
allowing other systems with weaker nonlinearity to reach
the blockade regime.
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Our theoretical description of the considered bosonic
nonlinear mode driven by resonant optical fields is based
on the quantum master equation. By analyzing the system,
we find the essential ingredients for the dynamical block-
ade to occur and identify the underlying mechanism.
We present comprehensive numerical evidence for the
phenomenon in different regimes of the mode parameters.
The model.—Let us consider a driven-dissipative Kerr

nonlinear quantum mode represented by the Hamiltonian

Ĥ ¼ Eâ†âþ αâ†â†â âþPðtÞâ† þ P�ðtÞâ; ð1Þ

where â† (â) is the creation (annihilation) operator, E is the
mode energy, α is the strength of nonlinearity, and PðtÞ
represents the envelope of a coherent driving field (laser). It
is implicit that we operate in the frame rotating at the laser
frequency, such that E is the mode energy relative to the
laser energy. The quantum master equation describing the
dynamics of an observable Ô is given by

iℏh _̂Oi ¼ h½Ô; Ĥ�i þ i
γ

2
h2â†Ô â−â†â Ô−Ôâ†âi; ð2Þ

where γ=ℏ is the decay rate of the mode. As a measure of
antibunching, we consider the second order correlation
function

g2ðt; t0Þ ¼
hâðtÞ†âðt0Þ†âðt0ÞâðtÞi
hâðtÞ†âðtÞihâðt0Þ†âðt0Þi ; ð3Þ

which represents the correlation between emission at times
t and t0. For ideal single photon emission, a vanishing equal
time correlation function g2ðt; tÞ is required. The dynamics
of the equal time correlation function can be obtained from
the master equation (see Ref. [44])

_g2ðt; tÞ ¼
4PðtÞ
ℏ

fðtÞ; ð4Þ

where the function fðtÞ ¼ ðg2ðt; tÞnIm½ψ � − Im½C�Þ=n2
with occupation number n ¼ hâ†âi, the mean field wave
function ψ ¼ hâi and C ¼ hâ†â âi. It is important to note
from Eq. (4) that the rate of change in g2ðt; tÞ is directly
proportional to the applied field PðtÞ.
The blockade mechanism.—Under a conventional con-

tinuous (time independent) driving field, the system reaches
its steady state where _g2ðt; tÞ ¼ 0 implying fðtÞ ¼ 0
through Eq. (4). In such a continuous driving field
configuration, the system shows the conventional blockade
with a constant correlation function g2ðt; tÞ ¼ g0. Here we
consider a driving field configuration

PðtÞ ¼ P0 þ P1

X

m

δðt −mTÞ; ð5Þ

that is, a combination of a continuous driving field P0 and
a series of δ-function pulses, where m is an integer.

We choose the time delay between consecutive pulses
Tγ=ℏ ≫ 1 such that the system reaches the steady state in
between the pulses. Let us consider the dynamics before
and after the mth pulse. Just before the arrival of the pulse
ðm − 1ÞT ≪ t < mT, the system would have forgotten the
effect of the previous pulse and would reach the conven-
tional steady state g2ðt; tÞ ¼ g0. Immediately after the mth
pulse, the system moves away from the steady state due to
the sudden excitation provided by the pulse. The corre-
sponding correlation function

g2ðt; tÞ ¼ g0 þ
4P0

ℏ

Z
t−mT

0

fðmT þ t0Þdt0; ð6Þ

where mT < t < ðmþ 1ÞT. Importantly, the change in the
correlation function, represented by the integral in Eq. (6),
is proportional to the continuous part of the driving field
P0. A change in g2ðt; tÞ from g0 requires both P0 ≠ 0 and
P1 ≠ 0. The need of P0 ≠ 0 is explicit in Eq. (6).
Additionally, P1 ≠ 0 is needed, because the change in
g2ðt; tÞ is given by the integral of fðtÞ that can contribute
only when it moves away from the steady state fðtÞ ¼ 0.
Thus, the change in g2ðt; tÞ from its conventional (block-
ade) value requires the combined form of the driving field
that combines the pulses with continuous excitation. Each
of them individually would induce no change in the
correlation function, and thus the photon statistics would
remain the same as that of the conventional blockade (see
Fig. 1). We emphasize that even the δ pulses, which are
dynamical in nature, provide just a constant g2ðt; tÞ in the
absence of continuous excitation.
Note that the correlation function g2ðt; tÞwould reach the

steady state before the arrival of the next (mþ 1) pulse.
Thus, the integral in Eq. (6) vanishes to satisfy g2ðt; tÞ ¼ g0
at t ¼ ðmþ 1ÞT − ϵ where ϵ is small. The total integral can
be seen as a sum of contributions coming from the different
time segments of the total interval from t ¼ mT to
ðmþ 1ÞT − ϵ. Contributions from the individual segments
oscillate between negative and positive values such that all
contributions added together give

R
T−ϵ
0 fðmT þ t0Þdt0 ¼ 0.

Thus, the system goes through the cycles of bunching
[large g2ðt; tÞ� and antibunching [small g2ðt; tÞ� over
time, as evident in Fig. 1(b). For the time segments
when the integral is negative, the value of the correlation
function g2ðt; tÞ can be lower than the conventional value g0
and can induce stronger antibunching than the conven-
tional one.
Analysis of equal time correlations.—In Fig. 2, we show

the equal time correlation function g2ðt; tÞ for a weakly
nonlinear mode with α=γ ¼ 0.05. For such a mode, the
conventional blockade can be induced by a continuous
driving field and provides a very weak antibunching
with g2 ≈ 1. For the combined driving field, the mode
shows strong antibunching in certain periodic intervals.
In the combined driving field configuration, the pulses
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periodically excite the mode on top of the continuous
excitation. The time interval where the correlation function
g2ðt; tÞ is small follows this periodicity of the combined
driving field. In the left panel of Fig. 2, we show one such
period of the correlation function g2ðt; tÞ. In the right panel,
we show g2ðt; tÞ for different occupation numbers at a time
where g2ðt; tÞ is minimum. We find that g2ðt; tÞ remains
small for the considered small occupation numbers. We are
unable to find small g2ðt; tÞ for large occupation number
n ∼ 1 in the present weakly nonlinear regime. These results
are comparable to what one gets from the interference
induced unconventional blockade in two-mode configura-
tion [28]. However, unlike the unconventional blockade,
here the unequal time correlation function does not show
rapid oscillations (to be shown later in this Letter).
Our considered mechanism also allows us to operate in

the strongly nonlinear regime where large occupation
numbers are accessible keeping g2ðt; tÞ small. A constant
driving field PðtÞ ¼ P0 induces conventional blockade in
the strongly nonlinear regime. Under this constant driving
field the system reaches to the steady state with constant
g2ðt; tÞ and nðtÞ. With a suitable E=γ ¼ 0.25, we minimize
g2ðt; tÞ for the given driving field. Keeping the same set of
parameters, we introduce the additional series of δ pulses.

We immediately find that the combined driving field, that is
instigated by adding the pulses, induces stronger anti-
bunching than the same for the constant driving field.
Moreover, at time t ¼ ts when the correlation g2ðt; tÞ is
minimum, the occupation number nðtsÞ is higher than what
we get from the conventional blockade (constant driving
field). Thus, the enhancement of single photon statistics
under a combined driving field is twofold: a reduction in
the correlation function g2ðt; tÞ and a simultaneous increase
in the mode occupation number n. In Fig. 3, we show the
single photon statistics of a strongly nonlinear mode. We
present the color plots for the correlation function g2ðt; tÞ,
obtained at time when it is minimum, induced dynamically
by the combined driving field and conventionally by a
continuous driving field, respectively, as functions of the
nonlinear interaction strength α and mode occupation n.
In the plots, the darker regions are indicating small
g2ðt; tÞ regimes. We find that the darker region for the
dynamically induced blockade is larger than that of
the conventional blockade. In addition, as shown in the
Supplemental Material SM [44], the enhanced antibunch-
ing is not sensitive to our choice of δ-function pulses and
also appears with finite duration pulses provided they are
shorter than the lifetime set by the inverse of the system
decay rate.
Analysis of unequal time correlations.—In Fig. 4, we

show the unequal time correlation function in the weak and
strong nonlinearity regimes. Our system is dynamical in
nature and thus the unequal time correlation function
g2ðt; t0Þ depends individually on t and t0. We consider that

FIG. 2. Strong antibunching in a weakly nonlinear mode
(α=γ ≪ 1). Left: g2ðt; tÞ is plotted as a function of time t with
a combined driving field (red solid line) and with a continuous
driving field (blue dotted line). We see that while the conventional
g2ðt; tÞ for a continuous driving field stays constant around 1, the
combined driving field periodically induces a small g2ðt; tÞ.
Right: the correlation function g2ðts; tsÞ (ts is indicated in the
left panel) is plotted for different occupation numbers n (by
varying P0). The calculated g2 ≈ 1 for the conventional continu-
ous driving field (blue dotted line). For the combined driving
field, g2ðt; tÞ (red circles) is small for all considered n. We used
the parameters E=γ ¼ 2, α=γ ¼ 0.05, P0=γ ¼ 0.5, P1=γ ¼ 0.5,
and Tγ=ℏ ¼ 18.5 (such that the pulse arrives in the left-hand plot
at t ¼ 37ℏ=γ, corresponding to the beginning of the plot scale).

FIG. 1. Different driving field configurations (left panels) and
the corresponding equal time correlation functions g2ðt; tÞ (right
panels). (a) Plot of the combined driving field that comprises the
continuous and pulsed excitations. (b) The corresponding corre-
lation function g2ðt; tÞ as a function of time t showing the strong
dynamical antibunching. However, when a continuous driving
field is applied alone (c), there is only conventional blockade (d)
and when a short pulse is applied alone (e), the antibunching is
washed out. This is because short pulses are broad in energy so the
conventional blockade, which depends on energy shift of a
multiple particle state out of resonance, no longer operates
efficiently. The chosen parameters are α=γ ¼ 0.05, P0=γ ¼ 0.2,
P1=γ ¼ 1, Tγ=ℏ ¼ 18.5, and E=γ ¼ 2.
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the reference time t0 ¼ ts, at which the equal time corre-
lation is minimum, and evaluate the correlation function
g2ðt; tsÞ as a function of time t. From the figure, we find that
g2ðt; tsÞ remains small for jt − t0j ∼ ℏ=γ in both regimes of
nonlinearity. This means that no extraordinary time reso-
lution is needed to probe the antibunching effect in both the
weak and strong nonlinearity regimes.
We compare the dynamical blockade with the conven-

tional blockade induced by a constant driving field. In the
weakly nonlinear regime, we find no sign of antibunching
with g2ðt; tsÞ ≈ 1 at all times for the conventional blockade.
In the strongly nonlinear regime, the conventional blockade
does show an antibunching effect, with, however, a larger
g2ðt; tsÞ compared to the same for the dynamical blockade
in the most relevant regime t ≈ ts.
In the weakly nonlinear regime, the dynamical blockade

is most comparable with the unconventional blockade
occurring between two strongly coupled modes [28].
Indeed, it offers small equal time correlations similar to
what we have obtained for the dynamical blockade.

However, the unequal time correlation function for the
unconventional blockade is controlled by a timescale that is
inversely proportional to the mode coupling [29]. In the
required strong coupling regime, this correlation function
rapidly oscillates in time. Observing the unconventional
blockade thus requires high time resolution [33,34]. In our
dynamical blockade, the timescale controlling g2ðt; tsÞ is
given by the photon life time ℏ=γ, that is, a natural time
resolution in emission from the mode.
Conclusions.—We have introduced a dynamically

induced blockade mechanism that is universal in all
regimes of nonlinearity strength. We have presented
advantages of this dynamical blockade over the existing
blockade mechanisms, conventional and unconventional.
However, unlike existing blockades, the dynamical block-
ade is not a continuous property of the system; instead it
goes through the cycles of bunching and antibunching
effects over time. Strong antibunching forms only in certain
periodic time windows at particular time delays from an
applied pulse. To select only these time windows and to
exclude all other time segments, additional arrangements in
experimental setups are required. For instance, single
photons can be obtained by introducing a shutter in the
emission and opening it up only during the time windows
when the blockade is the strongest. The required timescale
of these windows is set by the inverse of the system
dissipation rate.
Dynamical blockade can be implemented in a number of

systems containing nonlinear bosonic modes, e.g., optical
cavities coupled to various systems [12–18,47], photonic
crystal cavities [48], and nonlinear cavities [49]. Exciton
polaritons in semiconductor microcavities offer yet another
alternative system. In fact, this could be an ideal system for

FIG. 3. Enhancing antibunching in the strongly nonlinear
regime. Panels (a) and (b) show color plots of the correlation
function g2ðts; tsÞ calculated at time t ¼ ts [indicated in panels (c)
and (d)] as functions of occupation numbers nðtsÞ and the
nonlinearity strength α=γ for combined and continuous driving
fields, respectively. We see that for a given value of α=γ, the
combined driving field provides a much smaller g2ðt; tÞ compared
to a continuous driving field for the same occupation number.
Here we varied P0 to achieve different occupation numbers. In (c)
and (d), we consider the nonlinearity α=γ ¼ 1 and show the
correlation function g2ðt; tÞ and occupation number nðtÞ, respec-
tively, as functions of time t after a δ pulse is applied at t ¼ 2T.
The dotted lines indicate the respective quantities when a constant
driving field is applied (conventional blockade). We see enhance-
ment of the single photon statistics with smaller g2ðt; tÞ and larger
nðtÞ for certain times compared to the same for conventional
blockade. We used the parameters E=γ ¼ 0.25, P0=γ ¼ 0.5,
P1=γ ¼ 0.2, and Tγ=ℏ ¼ 12.3.

FIG. 4. Unequal time correlation function in different regimes
of nonlinearity. While the red solid lines represent the unequal
time correlation function for the combined driving field, the blue
dotted lines show the values corresponding to the conventional
blockade. Left panel: we plot the unequal time correlation
function g2ðt; tsÞ for α=γ ¼ 0.05, where ts is a reference time
as indicated in the figure. Other parameters are E=γ ¼ 2,
α=γ ¼ 0.05, P0=γ ¼ 0.5, P1=γ ¼ 0.5, and Tγ=ℏ ¼ 18.5. Right
panel: g2ðt; tsÞ in the strong nonlinearity regime with α=γ ¼ 1.
Other parameters are E=γ ¼ 0.25, P0=γ ¼ 0.5, P1=γ ¼ 0.2,
and Tγ=ℏ ¼ 12.3.
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exploring the dynamical blockade in both weakly and
strongly interacting regimes [25–27,45].
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