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We construct efficient deterministic dynamical decoupling schemes protecting continuous-variable
degrees of freedom. Our schemes target decoherence induced by quadratic system-bath interactions with
analytic time dependence. We show how to suppress such interactions to Nth order using only N pulses.
Furthermore, we show how to homogenize a 2m-mode bosonic system using only ðN þ 1Þ2mþ1 pulses,
yielding—up to the Nth order—an effective evolution described by noninteracting harmonic oscillators
with identical frequencies. The decoupled and homogenized system provides natural decoherence-free
subspaces for encoding quantum information. Our schemes only require pulses which are tensor products
of single-mode passive Gaussian unitaries and SWAP gates between pairs of modes.
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Decoherence due to unwanted system-environment
interactions is a major obstacle on the road towards robust
quantum information processing. Although quantum error
correction and fault-tolerance provide general mechanisms
to combat such sources of error, they are highly demanding
in terms of resources. In near-term quantum devices,
simpler strategies targeting a reduction of effective error
rates at the physical level are more realistic. Dynamical
decoupling (DD) is one of the success stories in this
direction: originally developed in the context of NMR
[1–3], it has been demonstrated in a wide range of systems
[4–10]. In DD, unitary control pulses are instantaneously
applied to the system at specific times. The goal is to
average out the effect of the system-environment interac-
tion, irrespective of its specific form.
A DD scheme is described by control pulses fUjgLj¼1

applied to the system S at times ftjgLj¼1 ⊂ ½0; T� resulting in
the evolution

UresðTÞ ¼ UðT; tLÞ
YL
j¼1

ðUj ⊗ IEÞUðtj; tj−1Þ: ð1Þ

HereUðtþ Δt; tÞ describes the uncontrolled time evolution
generated by the decoherence Hamiltonian from time t to
tþ Δt. The pulse sequence achieves Nth order decoupling
if there is an environment unitary UE such that
kUresðTÞ − IS ⊗ UEk ¼ OðTNþ1Þ. The (nested) Uhrig
dynamical decoupling (NUDD) scheme [11–13] is cur-
rently state of the art and has been experimentally dem-
onstrated [14]: it is remarkably efficient, requiring only
ðN þ 1Þ2M Pauli pulses to suppress generic interactions
between M qubits and their environment to order N. This
scaling is significantly more efficient than what could be
achieved by concatenating [15] first order schemes [16]

where pulses from a unitary 1-design are applied at
equidistant times.
DD for bosonic systems.—One may seek to construct

similar protocols for bosonic systems. A natural class of
system-environment interactions are Hamiltonians

HorðtÞ ¼ 1

2

X2n
j;k¼1

Aj;kðtÞRjRk; ð2Þ

which are quadratic in the mode operators R¼
ðQS

1;…;QS
nS ;P

S
1;…;PS

nS ;Q
E
1 ;…;QE

nE;P
E
1 ;…;PE

nEÞ of system
and environment; here AðtÞ ¼ AðtÞT ∈ R2n×2n is sym-
metric and n ¼ nS þ nE is the total number of modes.
These Hamiltonians generate one-parameter groups of
Gaussian unitaries UðtÞ. Motivated by earlier work on
decoherence suppression in a specific system-environ-
ment model [25], Arenz, Burgarth, and Hillier [26] have
pioneered the systematic study of dynamical decoupling
for infinite-dimensional systems: they showed that, even
in this restricted context, decoupling cannot be achieved
in the same strong sense as for qudit systems. While the
application of unitary pulses at specific times can
approximately decouple system and environment such
that UresðTÞ ≈ Ures

S ðTÞ ⊗ Ures
E ðTÞ, no pulse sequence

can render the system’s evolution Ures
S ðTÞ trivial for an

arbitrary initial Hamiltonian [Eq. (2)]. One may, how-
ever, find sequences which simplify the system’s evo-
lution over time T to be of the form Ures

S ðTÞ ≈ eiωTH0

where H0 ¼ 1
2

PnS
j¼1ðQ2

j þ P2
jÞ, a process referred to as

homogenization. In other words, after applying a
homogenization sequence, the effective decoupled and
homogenized evolution
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UresðTÞ ≈ eiωTH0 ⊗ Ures
E ðTÞ ð3Þ

is simply that of noninteracting identical oscillators
rotating with the same frequency. This evolution
[Eq. (3)] is still highly beneficial for fault-tolerant
quantum information processing as the eigenspaces of
the number operator H0 become decoherence free. By
combining such schemes with very simple error-cor-
recting codes spanned by tensor products of number
states with fixed total number, such as those constructed
in Ref. [27], reduced logical error rates can be achieved.
Herewe construct newdeterministic schemes that achieve

the decoupling and homogenization of quadratic system-
bath interactions to the Nth order using only a polynomial
number (in N) of pulses. We note that such interactions are
ubiquitous in physics, accurately describing present-day
quantum optical setups [28]. Furthermore, they provide
approximate descriptions of opto- and nanomechanical
oscillators [29,30], atomic ensembles [31], and ion traps
[32] in suitable parameter regimes. In particular, quadratic
Hamiltonians generate typically considered and often dom-
inant sources of noise such as single photon loss induced by
resonator energy damping, or more generally thermal
Gaussian noise. It is conceivable that the constructed
schemes provide benefits for systems with additional non-
linear interactions (e.g., of Kerr type), but this is beyond the
scope of this Letter. We note that our results extend to the
casewhere theHamiltonian [Eq. (2)] includes addition terms
that are linear terms in the mode operators (cf. Ref. [17]).
Our analysis proceeds in the language of the symplectic

group Spð2nÞ ¼ fS ∈ R2n×2njSJnST ¼ Jng and its Lie
algebra spð2nÞ ¼ fX ∈ R2n×2njXJn þ XTJn ¼ 0g, using
the fact that every Gaussian unitary generated by a
Hamiltonian [Eq. (2)] is in one-to-one correspondence
with a symplectic matrix SorðtÞ ∈ Spð2nÞ generated by
XorðtÞ ¼ AðtÞJn ∈ spð2nÞ. Here Jn ¼ JnS ⊕ JnE is the
2n × 2n matrix defining the symplectic form.
Instead of Eq. (1) we analyze the associated symplectic

evolution

SresðTÞ ¼ SorðT; tLÞ
YL
j¼1

ðSj ⊕ I2nEÞSorðtj; tj−1Þ; ð4Þ

where Sorðtj; tj−1Þ is generated by XorðtÞ from time tj−1
to tj and the pulses Sj ∈ Spð2nSÞ are associated with
Gaussian unitaries.
A bosonic decoupling scheme.—We propose the follow-

ing pulse sequence: the passive Gaussian unitary US
defined by its action

USQiU�
S¼−Qi; USPiU�

S ¼−Pi; for i¼ 1;…;nS ð5Þ
on system mode operators is applied at times

tUDDj ¼ TΔj;Δj ¼ sin2
jπ

2ðN þ 1Þ ð6Þ

for j ¼ 1;…; N. We note that US is a tensor product of
single-mode phase flips.
Theorem 1: (Bosonic decoupling sequence) For any

analytic generator Xor∶½0; T� → sp½2ðnS þ nEÞ�, there are
SS ∈ R2nS×2nS and SE ∈ R2nE×2nE such that the resulting
evolution [Eq. (4)] after applying N pulses satisfies

kSresðTÞ − SS ⊕ SEk ¼ OðTNþ1Þ: ð7Þ

Because of property [Eq. (7)], we call the pulse sequence
an Nth order decoupling scheme. Note that in Ref. [26] a
single application of the unitary US was shown to achieve
first order decoupling. For higher orders, remarkably, the
number of required applications is independent of the
number of system and environment modes. The times
[Eq. (6)] are those associated with UDD [33] for a
single qubit.
In Theorem 1 (and throughout the main body of this

Letter), we use the Frobenius norm kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðATAÞ

p
. We

state our bounds without detailed estimates on the constants
in OðTNþ1Þ. For concrete estimates on the required DD
control rate 1=T, a more refined analysis is necessary.
As an example, we provide a rudimentary bound in the
Supplemental Material [17] that involves the energy
scales Jz and J0 set by the system-bath interaction and
the bath Hamiltonian, respectively: it takes the form
Of½1=ðN þ 1Þ!�½ðJz þ J0ÞT�Nþ1g. This mirrors some of
the analysis conducted for single qubit UDD in
Ref. [34], but we note that the reference also provides
more detailed estimates.
Bosonic decoupling with arbitrary pulse times.—The

original derivation of UDD [33,35] discusses the effect of π
pulses (i.e., Pauli-σy) applied at a priori arbitrary times
t1;…; tL to a system qubit coupled to a bosonic bath. The
author focuses on a particular figure of merit defined as the
overlap of the time-evolved qubit state with the original
state. He finds that this “signal” is the inverse exponential
of a parameter

χðTÞ ¼
Z

∞

0

SβðωÞ
ω2

jyLðωTÞj2dω; ð8Þ

which depends on the noise spectrum SβðωÞ of the system-
bath coupling, as well as the pulse times t1;…; tL via
yLðzÞ ¼ 1 − eiz þ 2

P
L
m¼1ð−1Þmeiztm=T . Equation (8) is

then used to find optimal pulse times by minimizing the
quantity χðTÞ. Furthermore, Eq. (8) permits us to compare
the efficiency of different pulse sequences in a variety of
regimes. In particular, for hard high-frequency cutoffs in
SβðωÞ, UDD pulse times are optimal, whereas for soft high-
frequency cutoffs, the optimal sequences resemble periodic
DD [36].
We argue in the Supplemental Material [17] that the

Eq. (8) also completely characterizes bosonic decoupling
for a single mode coupled to a bath of oscillators at inverse
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temperature β: assuming that the initial state is a product
state (with the thermal state of the environment), and the
pulse unitary [Eq. (5)] is applied at times t1;…; tL, we find
that the system’s resulting evolution is described by a
Gaussian quantum channel whose nonunitary component is
fully specified by the quantity [Eq. (8)]. This provides a
complementary justification for the pulse sequence con-
sidered in Theorem 1. Also, all statements about the
optimality of pulse sequences and the temperature depend-
ence of the decoupling efficiency translate immediately
from the spin-boson setting to the one considered here.
Bosonic homogenization schemes.—We propose a pulse

sequence that homogenizes an already decoupled evolu-
tion. Assume that the system has ns ¼ 2m modes labeled by
bitstrings ν ¼ ðν1;…; νmÞ ∈ f0; 1gm. Let us introduce the
passive Gaussian unitaries Uy0 , Uxi , and Uzi for i ¼
1;…; m that make up the control pulses. They are defined
by their action on mode operators, i.e., by

Uy0QνU�
y0 ¼ Pν; Uy0PνU�

y0 ¼ −Qν;

UxiQðν1;…;νmÞU
�
xi ¼ Qðν1;…;νi−1;1−νi;νiþ1;…;νmÞ;

UxiPðν1;…;νmÞU
�
xi ¼ Pðν1;…;νi−1;1−νi;νiþ1;…;νmÞ;

UziQðν1;…;νmÞU
�
zi ¼ ð−1ÞνiQðν1;…;νmÞ;

UziPðν1;…;νmÞU
�
zi ¼ ð−1ÞνiPðν1;…;νmÞ; ð9Þ

for all ν ¼ ðν1;…; νmÞ ∈ f0; 1gm. We set Uyi ¼ UxiUzi .
The unitary Uy0 acts as the same single-mode passive
Gaussian unitary on all modes, Uzi as single-mode phase
flips on half of the modes, and Uxi (respectively Uyi) as
two-mode SWAP (respectively, beam splitter) gates between
pairs of modes. Depending on the experimental setup, the
difficulty of realizing two-mode SWAP gates may differ
significantly from that associated with single-mode
passive gates. Unlike in the case of multiqubit DD schemes
(which only require single-qubit Pauli gates), this fact
needs to be taken into account when analyzing, e.g., the
effect of finite pulse widths. For example, a SWAP gate in
quantum optics may be realized simply by crossing
fiberoptic wires, whereas a realization in circuit electro-
dynamics requires considerably more effort, see e.g.,
Ref. [37]. We emphasize, however, that unlike more recent
bosonic fault-tolerance proposals [38], our schemes do not
require any nonlinear gates, which are typically considered
more challenging.
Using the unitaries [Eq. (9)], we show how to construct a

multimode homogenization scheme from a multiqubit DD
scheme: assume that an (mþ 1)-qubit DD scheme with
qubits labeled from 0 to m uses pulses which are products
of single-qubit Pauli matrices ðσwÞk where w ∈ fx; y; zg
and k ¼ 0;…; m. Then we construct the bosonic pulses by
replacing Pauli factors (retaining their order in the product)
according to the substitution rules

ðσxÞ0 ↦ Uy0 ; ðσxÞi ↦ Uxi;

ðσyÞ0 ↦ Uy0 ; ðσyÞi ↦ Uyi;

ðσzÞ0 ↦ I; ðσzÞi ↦ Uzi ; ð10Þ

where i ¼ 1;…; m and I means that no pulse is applied.
Our homogenization scheme is obtained by applying the
substitution rule [Eq. (10)] to the NUDD scheme [11–13]
for mþ 1 qubits.
Theorem 2: (Bosonic homogenization sequence) The

described pulse sequence consists of ðN þ 1Þ2mþ1 passive
Gaussian pulses. For any analytic generator Xor∶½0; T� →
sp½2ð2m þ nEÞ� of the form Xor

S ðtÞ ⊕ Xor
E ðtÞ, there are

ω ∈ R and SE ∈ Spð2nEÞ such that the resulting evolution
[Eq. (4)] satisfies

kSresðTÞ − eωTJ2m ⊕ SEk ¼ OðTNþ1Þ:

Theorem 2 assumes that the system and environment are
alreadydecoupled, i.e., thatHorðtÞ¼HSðtÞ⊗IEþIS⊗HEðtÞ;
it guarantees a homogenized evolution since J2m ∈
spð2 × 2mÞ is the symplectic matrix associated with H0.
Correspondingly, we call the pulse sequence constructed
here a bosonic homogenization sequence of order N.
Combining decoupling and homogenization schemes (by
concatenation [39]) leads to an effective evolution of the form
of Eq. (3). In the remainder of this Letter, we sketch the
proofs of Theorems 1 and 2.
Bosonic decoupling using Uhrig times.—To prove

Theorem 1, we use the direct-sum structure of the matrix
XorðtÞ ∈ sp½2ðnS þ nEÞ�, that is

XorðtÞ ¼
�
XSSðtÞ XSEðtÞ
XESðtÞ XEEðtÞ

�
:

Here XBCðtÞ are analytic functions of real 2nB × 2nC
matrices for B;C ∈ fS; Eg by assumption; XSEðtÞ and
XESðtÞ are responsible for system-environment inter-
actions. We define the piecewise constant function
σ∶½0; 1� → f−1; 1g that satisfies σð0Þ ¼ 1 and switches
its sign at each ftj=TgNj¼1. For our analysis, we change into

the toggling frame [40] with evolution StfðTÞ generated by

XtfðtÞ ¼
�

XSSðtÞ σðt=TÞXSEðtÞ
σðt=TÞXESðtÞ XEEðtÞ

�
:

Direct computation of the Dyson series of StfðTÞ shows that
a sufficient condition for Nth order decoupling is the
following [17].
The function σðtÞ is (or equivalently the times tj are) a

solution to the integral equations

F r1;…;rs
γ1;…;γsðσÞ ¼ 0 if

�
sþP

s
k¼1 rk ≤ N and

⨁s
k¼1γk ¼ 1

ð11Þ
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for all s ∈ N, r1;…; rs ∈ N0 and γ1;…; γs ∈ Z2, where
F r1;…;rs

γ1;…;γsðσÞ ¼
R
1
0 dτs…

R τ2
0 dτ1

Q
s
k¼1 σðτkÞγkτrkk and where

⊕ denotes addition modulo 2.
The same integral Eq. (11) appears in the analysis of the

UDD scheme for a single qubit [13,41]; in particular, it is
known that the times [Eq. (6)] are a solution. Thus we
obtain a bosonic decoupling scheme (for an arbitrary
number of modes) by using the times of the single-qubit
UDD sequence.
Multiple qubits and multiple bosonic modes.—The proof

of Theorem 2 relies on a connection between multiqubit
systems and bosonic systems: we identify elements of
Spð2 × 2mÞ and a basis of its Lie algebra spð2 × 2mÞwhich
satisfy commutation relations analogous to those obeyed by
the Pauli matrices. We associate mode operators with basis
vectors of R2×2m ≅ R2 ⊗ ðR2Þ⊗m by

Qðν1;…;νmÞ ↔ jqi ⊗ jeν1i ⊗ � � � ⊗ jeνmi
Pðν1;…;νmÞ ↔ jpi ⊗ jeν1i ⊗ � � � ⊗ jeνmi:

Here we use an orthonormal basis jqi; jpi ofR2 for the first
factor (which we will later identify with “qubit 0”), as well
as an orthonormal basis je0i; je1i for each of the remaining
m factors (which will be identified with “qubits 1 to m”).
On R2, let us define the matrices

I ¼
�
1 0

0 1

�
; x ¼

�
0 1

1 0

�
;

y ¼
�
0 −1
1 0

�
; z ¼

�
1 0

0 −1

�

that we also write as Sð0;0Þ, Sð1;0Þ, Sð1;1Þ, Sð0;1Þ, respectively.
For α ¼ ða0; a1;…; amÞ ∈ ðZ2

2Þmþ1 the matrix Sα ¼ Sa0 ⊗
Sa1 ⊗ � � � ⊗ Sam on R2 ⊗ ðR2Þ⊗m satisfies: (i) there is a
subset Γ ⊂ ðZ2

2Þmþ1 such that fSαgα∈Γ is a basis of the Lie
algebra spð2 × 2mÞ. And (ii) let Γ̃ be the set of α ¼
ða0; a1;…; amÞ ∈ ðZ2

2Þmþ1 such that a0 ∈ fð0; 0Þ; ð1; 1Þg.
Then Sβ is orthogonal symplectic for every β ∈ Γ̃. We
prove these properties in the Supplemental Material [17].
Using the commutation relations between x, y, z it is
straightforward to verify that

S−1β SαSβ ¼ ð−1Þhα;βiSα for all α ∈ Γ; β ∈ Γ̃; ð12Þ

where hα; βi ¼ P
m
k¼0 a

T
k J1bk is the symplectic inner prod-

uct on ðZ2
2Þmþ1. The relations [Eq. (12)] are analogous to

the commutation relations σ−1β σασβ ¼ ð−1Þhα;βiσα of Pauli
operators for mþ 1 qubits [42].
Bosonic homogenization from qubit DD.—The close

resemblance of the commutation relations [Eq. (12)] with
those of Pauli matrices is key to our construction of
homogenization schemes. We remark that for qubit DD

schemes with Pauli pulses, it is precisely the phases
ð−1Þhα;βi that lead to a cancellation of unwanted terms in
the effective evolution. However, in contrast to the qubit
setting, the available pulses in the bosonic setting are
restricted to Sβ where Sb0 ∈ fI; yg. This motivates the
substitution rules [Eq. (10)], where on qubits 1;…; m we
replace σx, σy, σz by x, y, z, while on “qubit 0” we only
allow I and y.
In the following, we analyze the effect of the resulting

pulse sequence on a decoupled evolution. By assumption,
the generator of the uncontrolled evolution satisfies
XorðtÞ ¼ Xor

S ðtÞ ⊕ Xor
E ðtÞ ∈ sp½2ð2m þ nEÞ� and

Xor
S ðtÞ ¼

X
α∈Γ

BαðtÞSα; where BαðtÞ ¼
X∞
r¼0

bα;rtr

for bα;r ∈ R and where we use the basis of spð2 × 2mÞ from
(i). Since it is decoupled, restricting to the system only
(omitting the index S) is sufficient. Consider a general pulse
sequence defined by the times ftjgLj¼1 and a function

β∶f1;…; Lg → Γ̃ specifying which pulse SβðjÞ is applied at
time tj.
It is convenient to change into the toggling frame. By

exploiting the symplectic group and algebra parametriza-
tions from (ii) and (i) and using the relations Eq. (12), we
find that the toggling frame evolution is generated by

XtfðtÞ ¼
X
α∈Γ

Fαðt=TÞBαðtÞSα; ð13Þ

where we have defined the functions

Fαðt=TÞ ¼ ð−1Þ
P

j∶tj≤t
hα;βðjÞi

for t ∈ ½0; T�: ð14Þ

With the generator’s form [Eq. (13)], the toggling frame
evolution StfðTÞ ¼ T exp ½R T

0 XtfðtÞdt� can be expanded in
a Dyson series as

StfðTÞ ¼
X∞
s¼0

X
α⃗∈Γs

X∞
r⃗¼0

Ys
k¼1

Sαkbαk;rkF
r⃗
α⃗T

sþ
P

s
k¼1

rk ; ð15Þ

where α⃗ ¼ ðα1;…; αsÞ, r⃗ ¼ ðr1;…; rsÞ and where

F r⃗
α⃗ðfFαgÞ ¼

Z
1

0

dτs…
Z

τ2

0

dτ1
Ys
k¼1

FαkðτkÞτrkk :

Hence we can directly read off the Nth order term from
Eq. (15) and obtain the followingNth order homogenization
condition: for s ∈ N, r1;…; rs ∈ N0, and α1;…; αs ∈ Γ, we
have

F r⃗
α⃗ðfFαgÞ ¼ 0 if

� sþP
s
j¼1 rj ≤ N andQ

s
k¼1 Sαk ∉ f�IS;�J2mg:

ð16Þ
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The last step follows since a symplectic evolution of the form
c1IS þ c2J2m for c1, c2 ∈ R can be written as eωTJ2m [17].
A similar analysis applies to (mþ 1)-qubit DD

schemes with Pauli pulses. Consider a pulse sequence
on mþ 1 qubits defined by L ∈ N pulses Uj ¼ σβðjÞ for
β∶f1;…; Lg → ðZ2

2Þmþ1 that are applied to the system at
times tj. Then it achieves Nth order DD [13] if the

functions Fqubit
α defined by Eq. (14) for α ∈ ðZ2

2Þmþ1 satisfy

F r⃗
α⃗ðfFqubit

α gÞ ¼ 0 if

� sþP
s
j¼1 rj ≤ N and

⨁s
k¼1αk ≠ ð0;…; 0Þ ð17Þ

for all s ∈ N, r1;…; rs ∈ N0, and α1;…; αs ∈ ðZ2
2Þmþ1.

The associated bosonic scheme obtained using the
substitution rule [Eq. (10)] then has toggling frame gen-
erator specified by functions Fbos

α defined as

Fbos
α ðt=TÞ ¼ ð−1Þ

P
j∶tj≤t

hα;β0ðjÞi
for t ∈ ½0; T�

for all α ∈ Γ. Here β0ðjÞ ∈ ðZ2
2Þmþ1 differs from βðjÞ ∈

ðZ2
2Þmþ1 only in the first entry (associated with qubit 0),

where (1,0) [respectively (0,1)] is replaced by (1,1)
[respectively (0,0)] as prescribed by Eq. (10). Because
the symplectic form is J2m ¼ −Sð1;1;0;…;0Þ, it is straightfor-
ward to verify that the property [Eq. (17)] of the functions
Fqubit
α implies the desired property [Eq. (16)] for the

functions Fbos
α (cf. Ref. [17]). In other words, the decou-

pling property in the qubit setting translates to homogeni-
zation of bosonic modes.
Having established a general connection between uni-

versal (mþ 1)-qubit DD schemes and bosonic homogeni-
zation of 2m modes, Theorem 2 follows immediately by
applying this to the NUDD sequence which achieves Nth
order decoupling of (mþ 1) qubits with ðN þ 1Þ2ðmþ1Þ
Pauli pulses [17]. An example is shown in Fig. 1.
Conclusions.—Our Letter introduces novel, highly effi-

cient dynamical decoupling schemes for bosonic systems.
Instead of applying finite-dimensional (qubit) decoupling
procedures to distinguished subspaces, our schemes are of a
genuinely continuous-variable nature. This leads to remark-
ably simple schemes involving only passive Gaussian

unitaries. On a conceptual level, our work establishes a
tight connection between qubit- and continuous-variable
schemes. In particular, it implies e.g., that considerations
related to pulse imperfections such as finite widths (see,
e.g., Refs. [41,43]) translate immediately to our bosonic
schemes. More generally, this analogy may be used to lift
other qubit protocols to the bosonic context. On a practical
level, we believe that our protocols could become a powerful
tool for continuous-variable quantum information process-
ing as they pose minimal experimental requirements.
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