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Perfect crossed Andreev reflection (CAR) is striking for high-efficiency Cooper pair splitting, which bears
promising applications in quantum communication. Recent experimental advances have disclosed the way to
explore CAR in Dirac fermion systems under ultrastrong magnetic fields. We develop a scattering approach
to study quantum-Hall-superconductor—quantum-Hall junctions formed by a two-dimensional time-reversal
symmetric Dirac semimetal. We propose two different setups of the hybrid junction in the quantum limit,
where only zeroth Landau levels are involved in transport to exploit perfect CAR. In both setups, the CAR
probability can reach unity without applying bias voltage and is controllable by the magnetic field strength,
the junction width, the length, and the doping of the superconductor. CAR dominates the nonlocal transport
and is directly measurable by the differential conductances. We also identify a quantized spin injection per
CAR eventin one of the two setups. Our proposal is experimentally feasible and will be helpful for exploring
high-efficiency Cooper pair splitting and spin injection in Dirac materials.
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Introduction.—Crossed Andreev reflection (CAR) is a
process of converting an electron (hole) from one lead to a
hole (electron) in another lead through a superconductor (S)
[1-3]. Via CAR, Cooper pairs, which are strongly
entangled electron pairs, can in principle be split spatially
[2-4]; and they find fundamental interest and promising
applications in quantum communication [5-7]. Thus,
searching for systems with a large probability and conven-
ient manipulation of CAR is desirable. A variety of
candidate systems for CAR have been proposed, which
include ferromagnetic junctions [8—12]; p-n junctions
[13,14]; topological systems [15-20]; and other platforms
[21-33]. Some of them have been experimentally imple-
mented [9,21-29]. Nevertheless, most proposals require a
fine-tuning of the electronic structure or a particular bias
voltage. Usually, the processes of electron cotunneling
(EC) and local Andreev reflection (LAR) are inevitable,
which tend to suppress and obscure CAR. It remains
a challenge to have a system free of both detrimental
processes.

The quantum Hall (QH) effect forces charged carriers to
move along chiral edge channels that are robust against
disorder [34,35]. Recently, hybrid systems cooperating
with the QH effect and superconductivity have been
fabricated based on graphene [36—41] whose the low-
energy physics is governed by Dirac fermions. This paves
a new way to explore CAR in Dirac materials. However,
many physical properties of Dirac hybrid structures in the
QH regime, particularly in the quantum limit where only
the lowest Landau levels contribute to transport, have yet to
be explored.
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In this Letter, we develop a scattering approach to
investigate superconducting hybrid junctions in the QH
regime, which are based on 2D time-reversal symmetric
Dirac semimetals. In the quantum limit, the transport of
the Dirac semimetal is governed by particular zeroth
Landau levels that are spin polarized and chiral.
Making use of this mechanism, we propose the quantum
Hall-superconductor—quantum-Hall (QH-S-QH) junction
in two different setups of the quantum limit as a novel
platform for perfect CAR. One setup is a p-S-n junction
with the same magnetic field but different types of doping
in the two QH regions, whereas the other one is an n-S-n
junction with opposite magnetic fields but the same type
of doping, as sketched in Figs. 1(a) and (b), respectively.
Remarkably, in both setups, EC and LAR are completely
blocked; and CAR can be enhanced without fine-tuning of
the bias voltage. The CAR probability can reach unity and
is influenced by the length and doping of the super-
conductor, the magnetic field strength, and the junction
width. Due to the particular properties of conducting
channels, CAR dominates the nonlocal transport and
can be directly measured by differential conductances.
Moreover, we find that, while there is no spin injection in
the n-S-n junction, a quantized spin injection per CAR
event occurs in the p-S-n junction, which suggests a new
route for high-efficiency spin injection in superconducting
spintronics.

QH-S-QH junction based on a 2D Dirac semimetal.—
We start with a time-reversal symmetric Dirac semimetal
in two dimensions, which is described at low energies by

© 2019 American Physical Society
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FIG. 1.

(a) p-S-n junction with pu;up <0 and B; Bg > 0. Note that “n-type” and “p-type” refer to electron and hole doping,

respectively. Excitation energy spectra in the (c) left and (d) right QH regions. Red and blue lines are for electrons and holes,
respectively. The thick lines are zeroth Landau levels. Arrows 1 () indicate spin-up(-down) polarization. The dashed lines represent the
bulk Landau levels given by Eq. (4). Locations of the incident electron (/), normal reflected electron (B), and crossed-Andreev-reflected
hole (A) are indicated in (a). Here, yp = —p; = 3Ay, By = Bgr = 11B, k = 0.01v&,, and W = 20¢,. (b) n-S-n junction with p; up > 0
and B;Bp < 0. (e) and (f) are the same as (c) and (d), but for the n-S-n junction with pup = u; = —=3A, and By = —Bp = 11B,.
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The basis function is (z;/+.¢, Wi Wop w_ ), with the
indices + labeling the two Dirac cones related by time-
reversal symmetry and 7, labeling the two spins. The
effective Hamiltonian reads H (k)= vk,s, + lecysy +xk?s,,
with v as the Fermi velocity, k = (k.. lAcy) = —i(0,.0y) as
the wave vector operators, and (s,,s,.s,) as the Pauli
matrices acting on spin space. A small quadratic correction
k|k| < v is introduced to regulate the topological properties
as k — oo and ensure definite edge states [42]. 7 = is,C is
the time-reversal operator with C as the complex conjugation.
Model (1) can be used to describe the surface states of 3D
topological insulators [43—46], as well as the transition
phase between a quantum spin Hall insulator and a normal
insulator [47-49].

The QH-S-QH junction under study is formed by
the Dirac semimetal in a strip geometry, as depicted in
Figs. 1(a) and 1(b). Without loss of generality, we take the
junction in the § direction and apply the magnetic field
B; /g in the Z direction in the left or right normal-metal lead.
The junction (or strip) width is W, and the length of the S
region is L. We consider s-wave superconductivity, which
is induced locally by the proximity effect [S0-53]. Then,
the junction can be described by two decoupled sets of
Bogoliubov-de Gennes (BdG) equations. The one acting on

the basis ¥(r) = (‘//+»T"/’+,¢"//:i’ —z//T_.T)T reads

A(r)

<H<f<>—ﬂ<r>
TH(-R)T~" +u(r)

N e -pre. @)

where the gate-voltage-tunable chemical potential u(r) is
assumed to vary stepwise, pu(r) = pg in S (Jy| < L/2), and
u(r) = pp g in the left or right QH region (|y| > L/2).
A(r) = Ag®O(L/2 — |y|) with ©(y) as the Heaviside func-
tion is the pairing potential. It couples electron and hole
excitations from different Dirac cones of time-reversal
partners. The magnetic fields are taken into account via
the vector potential A(y) =-yB;®(-y—L/2)x—
yBrO(y — L/2)X, and we substitute the wave vector
operators as K = k — eA(r)/h [54], where e < 0 is the
elementary charge. The other BAG equation acting on the
basis (V/—-T’W—»L’V/i,i’_wl,ﬁy takes the same form as
Eq. (2) but replaces x by —«.

Scattering approach.—In the QH-S-QH junction, the
simple method of wave function matching to study trans-
port [55] is no longer applicable. Hence, we need to
generalize the scattering approach [56] for Dirac fermions
under strong magnetic fields. We assume hard-wall boun-
dary conditions in the X direction. In the QH regions, we
expand the electron wave function by a complete set of
quantum-well states

[Se]

WA (r) = efhr—ieBary/h Z)(j(x)fjv (3)

J=1

where y;(x) = \/2/Wsin [jz(x/W + 1/2)] for [x| < W/2,
and 0 otherwise. Note that f; are spinors with only electron
components in the basis used in Eq. (2). The phase factor
e~ B/ stems from the gauge transformation from A =
xBpJ to —yBxX. A € {L, R} distinguishes the left and right
QH regions. Plugging Eq. (3) into the BdG equation,
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making use of the inner products between the y;(x), and
then solving an eigenequation [57], we obtain the allowed
ky and f J for a given E. The real solutions of ky correspond
to propagating channels. All the real k, together form the
excitation energy spectrum of (quasi)particles. Similarly,
we find the basis wave function for holes by taking into
account the phase factor ¢*®a/" and only hole compo-
nents in f;. In §, the electron and hole components are
mixed, and the wave function is expanded in terms of y;(x)
but without a phase factor.

With the solutions of a wave function in each individual
region, we construct the scattering states in the junction.
The expansion coefficients that measure scattering ampli-
tudes between incident and outgoing channels are found by
matching the wave function of the scattering state and its
derivative at the QH-S interfaces. Summing the squared
absolute values of the corresponding scattering amplitudes
associated with propagating channels and normalized by
the channel velocities, we finally obtain the probabilities
of normal reflection (NR) R,,, LAR R,;,, ECT,,, and CAR
Ty [57].

Landau level spectra in the QH regions.—We analyze
the energy spectra in the QH regions, which can provide
helpful insights into the transport properties of the junction
and the search for perfect CAR. In the QH regions, the
energy spectra for electrons and holes are decoupled and
formed by a series of discrete Landau levels. The guiding
centers of electron and hole wave functions are determined
by x = +hk,/eB, respectively. The Landau levels are flat
when they are away from the edges at x = +=W/2. In the
limit k < v+/#/|eB|, which corresponds to a small quad-
ratic term in Eq. (1), the Landau levels in the bulk are
given by

E,. = tv\/2v|eB|/h, v=1,2,..., (4a)
E, = 0. (4b)

The energies are measured from the Fermi level u. These
Landau levels can be found alternatively exploiting ladder
operators [58,59]. In contrast, when close to the edges, all
Landau levels exhibit finite dispersion. The positive levels
E,, bend upward, whereas the negative levels E,_ bend
downward when approaching the edges. This behavior
implies that electrons and holes move only in chiral
channels close to the edges with their velocities given
by dE,, o/ dk,. Interestingly, both the zeroth Landau levels
of electrons and holes E,, which are particular for the Dirac
fermions, bend either upward or downward, depending
on the magnetic field direction. Moreover, they have
the same spin polarization, as indicated by the arrows in
Figs. 1(c)-1(f), for which the direction also depends on the
sign of the magnetic field. For y = 0, the Landau level
spectra of electrons and holes coincide. A finite u, however,

shifts the spectra oppositely by F p. As a result, in the
quantum limit 0 < |u| < vy/2|eB|/A [60], only a single
chiral electron channel is maintained at the Fermi level and
contributes to transport in one BdG block; whereas only a
single chiral hole channel with opposite spin polarization
contributes in the other block. Note that the two BdG
blocks are completely decoupled in our system. The
remarkable single-channel mechanism is unique to this
hybrid junction, which is time-reversal symmetric in the
absence of magnetic fields.

Perfect CAR.—The single-channel mechanism in the
quantum limit (described above) is realized in two distinct
setups of the QH-S-QH junction, namely, the p-S-n
junction with upu; <0 and B;Bgp > 0 and the n-S-n
junction with upu; > 0 and B;Bg < 0. In these setups,
for a given BdAG block, only electron channels are allowed
in one QH region; whereas only hole channels are allowed
in the other one. Thus, the processes of EC and LAR are
completely suppressed. We are left with NR and CAR. If an
electron stems from one Cooper pair in S and goes to one
QH lead, then the other electron from the pair must go to
the other lead. Note that these setups are the counterparts to
junctions formed by helical liquids, where NR and CAR are
forbidden [61,62]. As the chiral edge channels are topo-
logically protected and prohibit backscattering, we expect
the setups to be robust against weak disorder and nonideal
conditions regarding interfaces and potential variations
[63]. The two setups share many intriguing properties
concerning CAR, which we discuss in the following.

We take the p-S-n junction for illustration. For definite-
ness, but without loss of generality, we assume a positive
magnetic field B; = Br = B > 0 and negative (positive)
chemical potential in the left (right) QH region. Then, a
single chiral electron channel exists in the left QH region,
whereas a single antichiral hole channel exists in the right
QH region. Thus, NR and CAR are cross-edge processes;
1.e., the incident channels and reflected channels are at the
different strip edges; see Figs. 1(a) and 1(b). To explore
perfect CAR with T,, = 1, we calculate and present in
Fig. 2(a) the zero-energy probabilities of the four processes
as functions of the length L. Here, we use A, & = v/A,,
and By = |/ e&| as the units for energy, length, and the
magnetic field, respectively. For the typical values of
v=100 meV-nm (ie., vp=v/h=15x10°> m/sa)
and Ajg =1 meV [64-66], we have &, = 100 nm and
By = 0.066 T, which are in an experimentally accessible
regime. In the limit L — 0, the system recovers an n-p
junction, and electrons cannot be converted to holes due to
the absence of superconductivity. In the opposite limit
L > &, the tunneling across S is exponentially suppressed.
Thus, T,, =0 as well. However, at intermediate length
scales, we can find a large or even perfect CAR.
Interestingly, the large CAR persists in the junction where
the length L is longer than the superconducting coherence
length &.
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FIG. 2. Zero-energy probabilities of NR R,, (blue), LAR R,,
(yellow), EC T,, (purple), and CAR T, (red) as functions of
(a) length L, (b) chemical potential yg, or (c) junction width W.

Here, B = 32B,, and other parameters for each panel are the
same as in Fig. 3.

We also observe Fabry-Pérot oscillations with varying L,
which stem from the interference effect in S with a finite yj.
Fabry-Pérot oscillations also show up with respect to the
doping pg of S and the magnetic field B; see Figs. 2(b)
and 3(a). The interference occurs not only along the
junction in ¥ direction but also across the strip in the X
direction. Thus, analogous oscillations appear with respect
to the junction width W; see Fig. 2(c). The pattern of
oscillations is, however, more regular because the interfer-
ence consists of a single pair of propagating modes in the X
direction, which is contrary to the interference in the y
direction that also involves modes with decaying oscillation
behavior. Therefore, we are able to obtain perfect CAR. It is
possible to control CAR by the length, the doping of S, the
magnetic field strength, and the junction width. Finally, we
stress that the large CAR occurs at zero energy, which
indicates the exemption from a fine-tuning of the bias
voltage.

Next, we study the transport signature of CAR. We
calculate the local and nonlocal differential conductances,
which are defined as Gy =dl /dV, |y, and Gig =
dlg/dV,|y, o, tespectively, by using the extended
Blonder-Tinkham-Kapwijk theory [67,68]. Here, I

30 40
B/By
FIG. 3. (a) Zero-energy probabilities as functions of B in the
quantum limit. Legend is the same as in Fig. 2(a). (b) Zero-bias
local Gy and nonlocal differential conductances Gy as func-

tions of B. We choose L = 2&,, W = 20&, pus=pr =—pr =34,
and x = 0.010¢,.

and V; ; are the measured current and the applied bias
voltage in the left or right QH region, respectively. S is
grounded. In the two setups, LAR and EC are eliminated
completely so that NR and CAR dominate the local and
nonlocal transports, respectively. The conductances at zero
temperature are

Gr = -G = _(ez/h)Teh' (5)

Here, T,, = 1 — R,,, as required by the particle conserva-
tion; and the bias voltage enters the conductances as
excitation energy via T,,. Gir is negative and exactly
opposite to Gy, as shown in Fig. 3(b). Importantly, G r
provides not only a transport signature but also a direct
measurement of CAR.

Spin injection in the p-S-n junction.—The difference of
the two setups manifests mainly in the spin injection into S,
which we now clarify. In the n-S-n junction, the incident
electron and reflected hole carry opposite spin; see Figs. 1(e)
and 1(f). This implies that two electrons with opposite spin
are absorbed into S to form a spin-singlet Cooper pair, as we
expect for s-wave superconductivity. Therefore, we have no
spin transport between S and the QH regions.

However, this is not the case for the p-S-n junction. The
reflected hole carries spin down, which is remarkably the
same as that carried by the incident electron; see Figs. 1(c)
and 1(d). To further confirm this, we calculate the density
distributions of the four components of a scattering state
near the junction in Fig. 4. In S, the four components mix
together due the presence of superconductivity and strong
spin-orbit coupling; and they oscillate in both X and ¥
directions, reflecting the aforementioned interference
effect. We see clearly that the incident electron carrying

257701-4



PHYSICAL REVIEW LETTERS 122, 257701 (2019)

0.02

0.015

0.01

0.005

0.02

0.015

0.01

0.005

y/&o y/&o

FIG. 4. Contour plots of the densities of (a) spin-up, (b) spin-
down electrons, (c) spin-down, and (d) spin-up holes of a zero-
energy scattering state in the p-S-n junction. Here, B = 32B,,
W = 10¢,, L = 2, and other parameters are the same as in Fig. 3.

spin down at the lower edge is converted through § as a
hole also carrying spin down at the upper edge into
the other region. Therefore, we have an equal-spin
CAR that effectively pumps two equal spins into S. The
equal-spin CAR implies the creation of equal-spin triplet
Cooper pairs in S [69—72], which are of interest in super-
conducting spintronics [73]. Following the approach of
Ref. [70], we predict the value of spin pumped into §
explicitly as

S; = —=(h/27)T o). (6)

The spin injection is purely contributed by CAR. We have a
quantized spin injection of —h/2z per CAR event. For
perfect CAR, we obtain a perfect spin injection.

Summary.—We have developed a scattering approach to
investigate a 2D Dirac QH-S-QH junction. We have
proposed two different setups, which exploit the particular
properties of the zeroth Landau levels of the Dirac fermions
in the quantum limit, for realizing high-efficiency and
controllable CAR without fine-tuning of bias voltage. The
differential conductances provide a direct measurement of
CAR. We have identified a quantized spin injection in the
p-S-n junction.

We thank C. Gould, L. W. Molenkamp, M. Stehno,
and G. Tang for helpful discussions. This work
was supported by the DFG (SPP1666 and SFB1170
“ToCoTronics”), the Wiirzburg-Dresden Cluster of
Excellence ct.qmat (EXC2147, project-id 39085490), and
the Elitenetzwerk Bayern Graduate School on “Topological
Insulators”.
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