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Thin film flexoelectricity is attracting more attention because of its enhanced effect and potential
application in electronic devices. Here we find that a mechanical bending induced flexoelectricity
significantly modulates the electrical transport properties of the interfacial two-dimensional electron gas
(2DEG) at the LaAlO3=SrTiO3 (LAO=STO) heterostructure. Under variant bending states, both the carrier
density and mobility of the 2DEG are changed according to the flexoelectric polarization direction,
showing an electric field effect modulation. By measuring the flexoelectric response of LAO, it is found
that the effective flexoelectricity in the LAO thin film is enhanced by 3 orders compared to its bulk. These
results broaden the horizon of study on the flexoelectricity effect in the hetero-oxide interface and more
research on the oxide interfacial flexoelectricity may be stimulated.
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Complex oxide interfaces are known to possess many
novel physical properties because of their extraordinary
electron systems [1,2] such as the two-dimensional electron
gas (2DEG) in the LaAlO3=SrTiO3 (LAO=STO) hetero-
structure that was discovered in 2004 [3]. When a LAO thin
film of >3 unit cell (u.c.) thick is epitaxially grown on
TiO2-terminated (001) STO, it results in a metallic inter-
face, where high-mobility electrons are trapped [4]. The
LAO=STO heterostructure is one of the most remarkable
structures that has attracted a great deal of research interest
because it possesses plenty of interesting physical phe-
nomena and application potentials such as superconduc-
tivity [5], magnetism [6], and spin-orbital coupling effect
[7], etc., at the interface. The formation mechanism of this
2DEG has been discussed in many works [8–11], among
which the polar catastrophe is the most commonly dis-
cussed theory to explain the charge reconstruction across
the heterostructure. The polar catastrophe model states that,
in the LAO=STO heterostructure, ½ of the electrons on the
LAO layer surface transfer to and are trapped at the
interface to compensate the potential divergence accumu-
lated by the alternately charged atomic layers in LAO [8].
To broaden the application potential of the LAO=STO

2DEG system, many efforts have been made to realize
interfacial modulations through variant methods. In par-
ticular, spin field effect transistors [12], resistance switch-
ing [13], photon detection [14], gas sensing [15], and strain

modulation [16,17] have been demonstrated on this heter-
ostructure. It is also expected that the strain gradient could
realize subtle interfacial modulation on the LAO=STO
heterostructure. As reported by Catalan et al., the flexoe-
lectricity can influence the free charge distribution in
semiconductors, and the effective flexoelectric coefficient
in BaTiO3 is largely enhanced based on the barrier-layer
mechanism [18]. In the LAO=STO heterostructure, the
polar discontinuity induced interfacial conductivity renders
the flexoelectricity a perfect platform to realize the idea
that a polarity perturbation can induce modulations at the
interface.
Bending-induced electricity, i.e., flexoelectricity, is a

universal property possessed by all dielectric materials
[19–21]. In contrast to piezoelectricity, which is the polari-
zation induced by a homogenous strain, flexoelectricity is the
polarization caused by a strain gradient, and can be charac-
terized by the following equation [22]:

Pi ¼ μijkl
∂εkl
∂xj ; ð1Þ

where the flexoelectric polarization Pi is propotional to the
flexoelectric coefficient μijkl and the strain gradient
∂εkl=∂xj. This flexoelectric property is universal in all
dielectric materials since it is not restricted by the crystal
symmetry. The contribution to this flexoelectricity is the
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breaking of the local lattice centrosymmetry, where the
centers of net positive and negative charges are separated
under a strain gradient. Another mechanism that can
generate flexoelectricity is the asymmetric redistribution
of the electron density, as it was found in single layer
graphene [23,24]. It has also been found that flexo-
electricity plays a central role in biological functions
like the auditory systems [25] and bone repair and
remodeling process [26]. Very recently, the strain gradient
induced flexo-photovoltaic effect was discovered in cen-
trosymmetric single crystals, which further demonstrated
the modulation ability of flexoelectricity in oxide elec-
tronics [27].
In this work, we study the flexoelectric effect in LAO

thin film on a STO substrate and its impact to the electrical
transport properties of the interfacial 2DEG. By bending
the LAO=STO sample in different directions, its interfacial
resistance is manipulated to be an increase or decrease.
A strain gradient induced flexoelectric field is found to
greatly alter the electrical transport properties at the hetero-
oxide interface in terms of carrier density and mobility
change. It is also found that the effective flexoelectric
coefficient of the LAO thin film is 3 orders higher than its
bulk; this opens more possibilities in oxide thin film or
heterostructure based device designing.
Experiments were designed to measure the interfacial

resistance changewhen a strain gradient is introduced in the
LAO=STO heterostructure, which was fabricated by grow-
ing 20 u.c.-thick LAO on the TiO2-terminated (001) STO
substrate by pulsed laser deposition (PLD). The interfacial
electrical transport properties were measured from 2 to
300 K, which show identical 2DEG characteristics. Thin
film deposition and electrical characterization details are
provided in the Supplemental Material [28]. To ensure the
symmetry of electrical transport property measurement
configuration, a three-point mechanical bending fixture,
as illustrated in Fig. 1, was used to induce strain gradient
in the bar-shaped LAO=STO sample. Figure 1(a) shows
the case of bending the sample upwards in an n shape,
where the LAO film is on the tension side of the sample.
The u-shape bending case is to place the sample upside
down, where the LAO film is on the compression side of
the sample. Figures 1(b) and 1(c) schematically illustrate
our definitions of n-shape and u-shape bending, respec-
tively. In the later discussions, this notation will be used for
describing different bending directions. As shown by the
opposite directions of the yellow arrows in the n-shape or
u-shape bending state in Figs. 1(b) and 1(c), it is expected
that the induced flexoelectric polarizations or electric fields
will also have opposite signs and further induce different
influence on the 2DEG at the LAO=STO interface.
As gradually increasing the deformation displacement w

at the center of the sample, the change of interface
resistance under different bending status with variant
bending scales was recorded, and the results are

summarized in Fig. 2. The strain gradient is the value at
the center of the sample and is calculated from the theory of
elasticity [38,39]:

∂ε11
∂x3 ¼ 3w

�
L0

2

�−2
; ð2Þ

where L0 and w, as noted in Fig. 1(a), represent the length
of the sample’s bending part and the deformation displace-
ment of the sample’s middle point, respectively. The strain
gradient of u-shape bending is noted as negative, and the
n-shape bending is noted as positive. In Fig. 2, R0 is the
resistance measured under a relaxed state, and the resis-
tance change is calculated as the percentage of R0. It can be
seen that the resistance increases as the n-shape bending
scale increases, while it decreases as the u-shape bending
scale increases. It is also apparent that the resistance
changes proportionally to the strain gradient in both n-
shape and u-shape bending cases. It is worth noting that
when the bending force is relaxed, the resistance returns to
its original value and can repeat the same level of resistance
change under the same bending state. The error bars
displayed in Fig. 2 are calculated from multiple measure-
ments of more than two samples. As limited by the brittle
nature of single crystals, the strain gradient cannot go
further beyond the recorded values.
The flexoelectric modulation to the 2DEG is similar to

ferroelectric control of conduction at the LAO=STO
interface [40]. As depicted by yellow arrow in

FIG. 1. Bending of the LAO=STO heterostructure. (a) The
bending fixture setup for the three-point bending on LAO=STO
samples. The sample illustrated is the n-shape bending status.
Our definitions of the n-shape and u-shape bending are illustrated
in (b) and (c), respectively. The yellow arrows represent the
opposite flexoelectric polarizations in the LAO film under the two
different bending status.
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Figs. 1(b) and 1(c), it is proposed that in such a hetero-
oxide structure, when a strain gradient is introduced, a
flexoelectric polarization is expected to be generated and
alter the band diagram of the LAO film by coupling with
its intrinsic polarization. As known, the formation of the
interfacial 2DEG is induced by the diverged electrical
potential accumulated by the alternately charged atomic
layers (LaOþ and AlO−

2 ) in LaAlO3, which can be noted
as its intrinsic polarization. The LAO is grown on TiO2-
terminated STO, so the alternately charged atomic layers
in LAO start with a positively charged LaOþ layer, and
the intrinsic polarization is pointing down (fromLAO side to
STO side). Under u-shape bending, the flexoelectric polari-
zation in LAO is along the film’s intrinsic polarization, and
the potential divergence is enhanced by the flexoelectric
field. This gives rise to electron accumulation at the interface
and results in a decrease of interfacial resistance. By
contrast, under n-shape bending, the LAO flexoelectric
polarization is in an opposite direction of its intrinsic
polarization, and electrons will be expelled from the inter-
face to cause a resistance increase. A schematic illustration
of the energy band diagram change is shown in Fig. S5 in the
Supplemental Material [28]. The first-principles calcula-
tions were also conducted trying to understand the origin of
the interfacial resistance change, and as shown in Fig. S7, the
carrier density change at the interface is in agreement with
interfacial resistance change. The carrier density change is
attributed to the total polarization change which is the
superposition of the LAO intrinsic polarization and the
flexoelectric polarization from the u-shape and n-shape
bending. More details about the DFT calculation are
introduced in the Supplemental Material [28].

To reveal the existence of such flexoelectric field
across the LAO=STO heterostructure, the bending induced
potential difference across the LAO layer was probed under
a dynamic bending stimulation. (See Supplemental Material
for measurement circuit [28].) As shown in Figs. 3(a)
and 3(b), the output voltage follows the displacement in a
periodical manner. In the n-shape bending case, the output
voltage and force excitation is antiphase, suggesting that
the interfacial electrons are expelled from the interface; this
causes the interface resistance increase. In the u-shape
bending case, the output voltage signal and force excitation
is in phase, suggesting that the interface attracts more
electrons; this causes the interface resistance decrease.
Flexoelectric polarization generates electric field, so the

bending induced modulation to the 2DEG can be further
explained in the scenario of electric field effect (EFE).
The EFE modulations to the carrier density and mobility of
the 2DEG at LAO=STO interface have been demonstrated
through either front gating, back gating, or dual gating
[4,41–46]. Under the u-shape (or n-shape) bending state,
the flexoelectric polarization in the LAO layer is pointing
towards (or away from) the interface and results in a
positive (or negative) bound charge sheet at the bottom of
the LAO. It is known that the 2DEG layer is located slightly
below interface and has a thickness of a few nanometers

FIG. 2. The interface resistance change percentage under
u-shape (negative strain gradient) and n-shape (positive strain
gradient) bending. To illustrate the resistance change more
obviously, the y-axis scale is adjusted according to the maxi-
mum resistance change values under the corresponding bending
status.

FIG. 3. The flexoelectric field effect across the LAO=STO
heterostructure. The output voltage between the LAO=STO
interface and the Au top electrode on LAO film surface under
a periodic dynamic (a) n-shape bending and (b) u-shape bending.
The blue curves are the voltage signal probed from the
LAO=STO interface. The red curves are the bending displace-
ment at the center of the sample. (c) The experimental interfacial
electrical transport property change under different bending
states: the circles are carrier densities and the squares are
mobilities. The negative and positive strain gradients represent
u-shape and n-shape bending, respectively. The corresponding
sheet resistance change is shown in Fig. S4 of the Supplemental
Material [28], where the strain gradient values are estimated from
the sample’s maximum bending limit.
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extended in the STO side [47–50], so the bound charge
sheet will act as an external front bias to the 2DEG. In this
scenario, the flexoelectric field induced interfacial resis-
tance modulation result shown in Fig. 2 is consistent with
the reported works, where u-shape (or n-shape) bending
corresponds to a positive (or negative) bias [41,42].
Previous studies have shown that such an EFE modu-

lation trend is a result of the increase or decrease of
interfacial free electron density [42–44]. To verify this,
Hall measurement was conducted on the LAO=STO
structure under different bending states (experimental
details are introduced in the Supplemental Material
[28]). Results shown in Fig. 3(c) reveal that the interfacial
carrier density increases under u-shape bending but
decreases under n-shape bending; this is consistent with
reported EFE modulations [42–44]. However, it should be
pointed out that the carrier density change is relatively
larger than the resistance change, implying that the electron
mobility changes in a different trend. A similar phenome-
non was also observed in the EFE: when the front-gate
voltage increases, more electrons accumulate near the
interface; however, compared to the charge carriers extend-
ing into the STO substrate, the charge carriers closer to the
interface experience more scattering, leading to a lower
mobility [43,44]. Furthermore, because of the universality
of flexoelectricity, the flexoelectric field in the STO can
also influence the 2DEG, like the way of a back-gate
voltage [4,45,46]. However, as what will be discussed later,
the contribution from such a scenario should be limited
since the effective flexoelectric coefficient of the STO
substrate is much smaller than the LAO film.
To clarify the picture of physics occurring across the

heterostructure as bended, the flexoelectric contributions
from both the LAO film and STO substrate are studied
through measuring their effective flexoelectric coefficients.
The measurement setup is introduced in the Supplemental
Material [28]. As shown in Fig. 4, the flexoelectric polar-
izations of all materials show linear relation with the
applied strain gradient, and their effective flexoelectric
coefficients are the slopes of the lines. By using the
interfacial 2DEG as one of the electrodes, we characterized
the effective flexoelectric coefficient μ12effLAO=STO of the
LAO layer. For comparison, the effective flexoelectric
coefficients of LAO bulk and STO bulk, μ12

eff
LAO-bulk

and μ12
eff

STO-bulk, correspondingly, were also measured;
among them the value of μ12effSTO-bulk is in the same level as
reported by Zubko et al. [6.1 nC=m for (001)STO] [38,39],
while the μ12

eff
LAO-bulk is relatively smaller compared to

STO bulk. Though there is no literature report about LAO
flexoelectric coefficient for comparison, it is expected that
the flexoelectric response in bulk LAO should be smaller
than that of STO, since the intrinsic flexoelectric coefficient
is proportional to the dielectric constant [51] (300 for STO
and 25 for LAO at room temperature [52]). However, it is
quite surprising to see that the LAO thin film has an
extremely large effective flexoelectric coefficient of

1.01 × 103 nC=m, which is nearly 3 orders enhancement
compared to the μ12

eff
LAO-bulk.

The interfacial strain at LAO=STO and its consequences
may play a role in the significant enhancement of LAO
film’s flexoelectricity compared to its bulk. The lattice
mismatch between LAO and STO is about 3%: this will
cause the STO surface lattice to be compressively strained
at the interface and the LAO layer to be tensely strained.
This strained interface has two consequences, where the
ferroelectriclike distortions of the TiO6 octahedra at the
STO surface is one of them [53–57]. It is well known that
STO is an incipient ferroelectric, and it has been demon-
strated that biaxial strain engineering can induce ferroelec-
tric polarizations in STO film [56] and the surface
ferroelectricity at STO bulk [57]. The interfacial dipole
effect at the LAO=STO heterostructure has also been
reported [58]. This ferroelectricity at STO surface could
contribute to the enhancement of LAO film’s flexoelec-
tricity. Another consequence of interfacial strain is that a
strain gradient will be established in the LAO layer: if
half of the strain relaxes across a 20 u.c. LAO thin film,
which is about 7.8 nm thick, the induced strain gradient in
LAO layer is in the order of 106 m−1. This strain gradient
will result in a static flexoelectricity which may also result
in an enhanced flexoelectricity in the LAO film.
Experiments were designed to measure the effective

flexoelectric coefficients of LAO and STO thin films on Nb
doped STO (Nb:STO) substrate since Nb:STO has the
same lattice constant as STO but can act as bottom

FIG. 4. Flexoelectric polarization versus the applied strain
gradient measured at room temperature. The slopes are calculated
as the flexoelectric coefficients of (a) LAO film on TiO2-
terminated STO, (b) LAO bulk, (c) STO bulk, (d) LAO film
on Nb:STO, and (e) STO film on Nb:STO. All the materials are in
the (001) direction.
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electrode. By growing LAO or STO film on (001)Nb:STO,
we can directly measure the flexoelectric response
of the LAO or STO film, and the results are also shown
in Figs. 4(d) and 4(e). One can see that effective flexo-
electric coefficient of the STO film on Nb:STO, i.e.,
μ12

eff
STO-film, is still in the same order of magnitude

compared to its bulk. However, significantly enhanced
flexoelectricity, i.e., μ12

eff
LAO-film, can be found in the

LAO=Nb∶STO sample which possess the same scenario
of interfacial strain and strain gradient as the LAO=STO
system. These results further suggest that the enhancement
of thin film flexoelectricity in the LAO=STO heterostruc-
ture could be a consequence of the interfacial strain. In fact,
it has been demonstrated that the electrical modulation
capability in those nanoscale materials or thin films is
usually much more obvious [59–63]. Nevertheless, the
mechanism of the enhanced flexoelectricity in the LAO
film deserves further investigations.
Before conclusion, it is worth mentioning that the in-

plane strain the LAO layer and the LAO=STO interface
experienced during bending might also influence the
2DEG. Our previous work revealed the resistance change
at the LAO=STO interface induced by homogeneous strain,
but only less than 0.1% by a strain of about 0.2% [17,64].
The surface compressive or tensile strain under the maxi-
mum bending scales shown in Fig. 2 can be estimated by
multiplying the strain gradient (≥0.5 m−1) by half of the
sample thickness (0.5 mm × 0.5); this results in a surface
strain less than 0.125%, which is much smaller than the
previous work. Compared to the 3% interfacial resistance
change induced by bending, the in-plane strain effect can be
neglected. Therefore, it is believed that bending induced
strain gradient and flexoelectricity dominates the influence
to the electrical transport property modulation. Other report
also suggests the existence of flexoelectricity in the
LAO=STO system, where interfacial conductivity modu-
lation is realized by the tip pressing force of the scanning
probe microscope (SPM) [63]. However, as reported, the
oxygen vacancy migration induced by the SPM tip pressing
is nonrecoverable until an electrical bias is applied. By
contrast, in our work, recoverable modulation can be
achieved, allowing us to quantitatively and macroscopically
demonstrate the flexoelectric effect in the LAO=STO
heterostructure and its modulation to the interfacial elec-
trical transport properties. This makes the flexoelectric
effect in this 2DEG promising for device applications such
as mechanical sensing, energy harvesting, and flexoelec-
tricity enhanced photovoltaics.
In summary, by inducing a strain gradient to the

LAO=STO heterostructure, large electrical transport modu-
lation to the interfacial 2DEG has been realized. The
interfacial resistance increases during n-shape bending
and decreases during u-shape bending, and the enhanced
interfacial flexoelectricity is believed to play a crucial
role in a scenario of electric field effect modulation.

Coupled with intrinsic polarization of the LAO thin film,
flexoelectric polarization shows its ability to stimulate an
electron density and mobility change at the interfacial
2DEG. This result illustrates how the flexoelectricity can
influence the complex oxide interface based electronic
devices, and opens new possibilities for device design
based on complex oxide thin films and heterostructures.
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