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We study the electron-phonon coupling in twisted bilayer graphene (TBG), which was recently
experimentally observed to exhibit superconductivity around the magic twist angle θ ≈ 1.05°. We show that
phonon-mediated electron attraction at the magic angle is strong enough to induce a conventional
intervalley pairing between graphene valleys K and K0 with a superconducting critical temperature
Tc ∼ 1 K, in agreement with the experiment. We predict that superconductivity can also be observed in
TBG at many other angles θ and higher electron densities in higher moiré bands, which may also explain
the possible granular superconductivity of highly oriented pyrolytic graphite. We support our conclusions
by ab initio calculations.
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Twisted bilayer graphene (TBG) is a highly tunable
system, which is engineered by stacking two graphene
layers at a relative twist angle θ, a procedure which
produces a moiré pattern superlattice. Recently [1,2], it
was observed that TBG at low filling exhibits unconven-
tional insulator and superconductor phases near the magic
angle θ ¼ 1.05°, where the lowest electron bands become
extremely flat [3,4]. The Fermi energy of the system is below
10 meV, while by comparison the superconductor critical
temperature Tc ∼ 1 K is relatively high. Since then, some
theoretical studies have been devoted to understanding the
insulator and superconductor phases of the TBG [5–34].
A closely related system, the highly oriented pyrolytic
graphite (HOPG), which contains numerous twisted inter-
faces, was also reported showing evidences of granular
superconductivity [35–37], and is suggested to share a
similar superconductivity mechanism as that in TBG [9,38].
Here we show that the TBG moiré pattern exhibits an

enhanced electron-phonon coupling, which can lead to a
conventional superconductivity with high Tc at certain
twist angles and electron densities. In particular, our
calculation estimates a Tc of order 1 K at the magic angle
θ ¼ 1.05° around a filling of two electrons per superlattice
unit cell, in agreement with the TBG experiment [1]. Most
importantly, we make the falsifiable prediction that Tc can
be higher at larger electron densities and certain ranges of
the twist angle θ, for instance in the second moiré band near
θ ¼ 0.6°, and in the second or higher moiré bands for
θ ≳ 1°. This may explain the possible superconductivity of

HOPG where the interface twist angles are mostly not
at the magic angle. Further, we conjecture the insulating
phase at two electrons per unit cell is a Bose-Mott
insulator [39].
The moiré superlattice of TBG is shown in Fig. 1(a),

where D1 and D2 are lattice vectors of length jDjj ¼
a0=½2 sinðθ=2Þ�, and a0 ¼ 0.246 nm is the graphene lattice
constant. The large electron-phonon coupling ofTBGcanbe
intuitively understood from Fig. 1. We denote the phonon
field in TBG layer j (j ¼ 1, 2) asuðjÞðrÞ, namely, the atomic
displacement at coordinate r in layer j. We then define the
relative displacement u ¼ uð1Þ − uð2Þ, and the center of
mass displacement uc ¼ ðuð1Þ þ uð2ÞÞ=2. The key obser-
vation is that for small θ, a small in plane relative

u

u

u~

θ
D1

D2

AA

u~

u~

u~ AA

AA

AB

BA

(a) (b)

FIG. 1. (a) Moiré pattern of the TBG, which has AA, AB,
and BA stacking sites (A and B denote the graphene sublattices).
(b) A uniform displacement u of graphene layer 1 (blue) relative
to layer 2 (red) yields a superlattice displacement jũj ¼ γjuj
perpendicular to u, where γ ¼ 1=2 tanðθ=2Þ.
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displacement u significantly affects the superlattice. When
layer 1 of the TBG undergoes a uniform translation u
relative to layer 2 [Fig. 1(a)], the AA stacking positions
will move by jũj ¼ γjuj perpendicular to u, where γ ¼
1=½2 tanðθ=2Þ� [Fig. 1(b)]. If the relative displacement
u is nonuniform, it will induce a large superlattice defor-
mation due to the amplification factor γ ≈ θ−1 ≫ 1 (see the
Supplemental Material [40] Sec. I). Accordingly, the low
energy electrons will experience a large variation of super-
lattice potential, yielding a strong coupling with the in plane
relative displacement phonon field u. In contrast, the center
of mass displacement uc has no amplified effect on the
superlattice (see the Supplemental Material [40] Sec. I).
Therefore, we shall only focus on the electron-phonon
coupling of the relative displacement field u.
The band structure of the TBG can be calculated using

the continuum model in Ref. [4]. Figure 2(a) shows the
graphene Brillouin zones (BZs) of the two layers, which are
relatively twisted by θ. When the two layers are decoupled,
the low energy electrons of each layer are Dirac fermions at
K and K0 points, which are described by Hamiltonian
hKðkÞ¼vðσxkx−σykyÞ¼ℏvσ� ·k and hK

0 ðkÞ ¼ −ℏvσ · k,
respectively. Here σx;y;z are the Pauli matrices for sublattice
indices, ℏv ≈ 610 meVnm is the graphene Fermi velocity,
and momentum k is measured from the Dirac point. In
addition, each Dirac band has a twofold spin degeneracy,
and we assume zero spin orbit coupling. The K (K0) points
of the two layers differ by momentum vectors qj (−qj)
as shown in Fig. 2(a) (j ¼ 1, 2, 3), which constitute
the edges of the hexagonal superlattice moiré BZ,
with jqjj ¼ kθ ¼ 8π sinðθ=2Þ=3a0.
When the interlayer hopping is introduced, to the lowest

order, the Hamiltonian at valley K and near moiré BZ K0
M

point [Fig. 2(a)] takes the truncated form [4]

HKðkÞ ¼

0
BBBBB@

hKðkÞ wT1 wT2 wT3

wT†
1 hKðk1Þ 0 0

wT†
2 0 hKðk2Þ 0

wT†
3 0 0 hKðk3Þ

1
CCCCCA
; ð1Þ

wherek is measured fromK0
M point,kj¼k−qj (j¼1, 2, 3),

the matrices Tj are given by T1¼1þσx, T2 ¼ 1 − 1
2
σx−

ð ffiffiffi
3

p
=2Þσy, T3 ¼ 1 − 1

2
σx þ ð ffiffiffi

3
p

=2Þσy, and w ≈ 110 meV
is the nearest momentum hopping amplitude. Near k ¼ 0
and zero energy, theHamiltonian [Eq. (1)] can be folded into
a 2 × 2 effective Dirac Hamiltonian [4]

H̃KðkÞ ¼
�
1 − 3α2

1þ 6α2

�
ℏvσ� · k; ð2Þ

where α ¼ w=ℏvkθ. In total, there are 4 Dirac fermions at
K0

M and four Dirac fermions at KM near zero energy, due to
the valley K, K0 and spin ↑;↓ fourfold degeneracy [further
momentum hoppings are needed in Eq. (1) to obtain the
Dirac fermions atKM]. The Dirac fermions at valleyK0 have
opposite helicity, described by replacing σ� · k → σ · k in
Eq. (2). The magic angle θ ≈ 1.05° is given by α2 ¼ 1=3,
where the Dirac Fermi velocity vanishes. Numerical calcu-
lations near the magic angle show the entire width of the
lowest two bands can be as low as 1 meV [4].
The coupling between electrons and long wavelength

phonons can be obtained by examining the change of
electron band energies under uniform lattice deformations.
Under deformation induced by a relative displacement u,
the momentum vectors qj [Fig. 2(b)] are deformed by
δq1 ¼ γkθð∂xux; ∂yuxÞ, and δq2;3 ¼ γkθ½�ð ffiffiffi

3
p

=2Þ∂xuy −
1
2
∂xux;− 1

2
∂yux � ð ffiffiffi

3
p

=2Þ∂yuy� (see the Supplemental
Material [40] Sec. I). This induces a change of kj ¼
k − qj in the Hamiltonian [Eq. (1)], which perturbs the
electron band energies. The variations of v and w are
subleading compared to δqj, and will be ignored here. The
variation in Hamiltonian [Eq. (2)], namely, the electron-
phonon coupling, δH̃ðk̄Þ ¼ Hepðk̄Þ, can be derived to be
(see the Supplemental Material [40] Sec. I)

Hη;ζ;s
ep ðk̄Þ ¼ Hη;ζ;s

C3 ðk̄Þ þHη;ζ;s
SOð2Þðk̄Þ;

Hη;ζ;s
C3 ðk̄Þ ¼ g1αηγℏvψ

†
k0 ½k̄xð∂yux þ ∂xuyÞ

þ k̄yð∂xux − ∂yuyÞ�ψk;

Hη;ζ;s
SOð2Þðk̄Þ ¼ γℏvψ†

k0 ½g2αðησxk̄x − σyk̄yÞð∂yux − ∂xuyÞ
þ g3αðησxk̄y þ σyk̄xÞð∂xux þ ∂yuyÞ�ψk; ð3Þ

with index η ¼ �1 for graphene valley K, K0, ζ ¼ �1
for moiré BZ valley KM, K0

M, s ¼ �1 for spin ↑;↓,
and we have defined g1α ¼ f½9α2ð1þ 3α2Þ�=ð1þ 6α2Þ2g,
g2α ¼ ½ð9α2Þ=ð1þ 6α2Þ2�, and g3α ¼ ½ð3α2Þ=ð1þ 6α2Þ�.
ψk and ψ†

k are the Dirac electron annihilation and creation
operators, and k̄ ¼ ðkþ k0Þ=2 is the average momentum
of the electron state before and after phonon interaction.
Note that Hep is independent of ζ and s, and contains two
partsHC3 andHSOð2Þ, which are C3z and SO(2) rotationally
invariant about z axis, respectively. Besides, Hep respects
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FIG. 2. (a) Illustration of the graphene BZs of two layers, and
their relation to the moiré BZ. (b) Under phonon-induced
superlattice deformations, qj, are deformed, which leads to the
change in electron band energies.
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the TBG twofold rotation symmetry C2x about x axis,
which transforms ðux; uyÞ to ð−ux; uyÞ.
We also need to know the phonon spectrum of the TBG.

Previous studies show that in plane phonons of the two
layers of TBG are nearly decoupled [48]. Therefore, the
TBG in plane phonon spectrum is approximately that of two
isolated graphenemonolayers folded into themoiré BZ. The
lowest bands of phonon field u thus has Hamiltonian

Hph ¼
X
p

ðℏωp;La
†
p;Lap;L þ ℏωp;Ta

†
p;Tap;TÞ; ð4Þ

where ap;L, a
†
p;L and ap;T , a

†
p;T are the annihilation and

creation operators of longitudinal and transverse polarized
phonons, respectively. The frequencies ωp;L ¼ cLp and
ωp;T ¼ cTp are acoustic, with p ¼ jpj. cL, cT are the
longitudinal and transverse sound speeds of monolayer
graphene. The phonon field u at long wavelengths is

uðrÞ ¼
X
p

eip·rffiffiffiffiffiffiffiffiffiffiffi
NsΩs

p ðip̂up;L þ iẑ × p̂up;TÞ; ð5Þ

where up;χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðℏΩÞ=ð2Mωp;χÞ�

p ðap;χ þ a†−p;χÞ for χ ¼ L,
T polarizations, Ω and Ωs are the unit cell areas of the
graphene lattice and moiré superlattice, respectively, andNs
is the number of supercells. There are also many optical
phonon bands in the moiré BZ corresponding to short
wavelength components of u, but here we will only focus
on the lowest acoustic phonon bands which couple to
electrons via Eq. (3).
Assume the Fermi surfaces are jkj ¼ kF in the Dirac

hole (or electron) bands. The phonon mediated electron-
electron interaction near the Fermi surfaces can then be
calculated perturbatively in the Bardeen-Cooper-Schrieffer
(BCS) channel:

HðphÞ
int ¼

X
k;k0

VII0
kk0 ðωÞ
NsΩs

c†k0;Ic
†
−k0;I0c−k;I0ck;I ; ð6Þ

where I ¼ ðη; ζ; sÞ denotes indices for the eight Dirac
cones, the frequency ω ¼ ðξk0 − ξkÞ=ℏ with ξk ¼ −½ð1 −
3α2Þ=ð1þ 6α2Þ�ℏvðjkj − kFÞ being the band energy at k,
while ck;I and c†k;I are electron annihilation and creation
operators in the Dirac hole band I. To simplify the result,
we take the approximation cL ¼ cT (both around 104 m=s).
For θ near the magic angle (α2 ≈ 1=3), we find the
interaction in the lowest two moiré bands is

VII0
kk0 ðωÞ
Ωs

≈
ℏ2v2k2Fϖ

ηη0
kk0

9Mc2T

ω2
p;T

ω2 − ω2
p;T

fηη0 ðφk;φk0 Þ; ð7Þ

where M is the Carbon atomic mass, p ¼ k − k0,
φk ¼ argðkx þ ikyÞ is the polar angle of k, and

ϖηη0
kk0 ¼ ϕη†

k0ϕ
η
kϕ

η0†
−k0ϕ

η0
−k with ϕη

k¼ð1;−ηe−iηφkÞT= ffiffiffi
2

p
being

the Dirac hole band wave function at valley η. The function
fηη0 is given by

fηη0 ðφk;φk0 Þ ¼

8><
>:

−1−2cosðφk−φk0 Þ; ðη¼ η0Þ����1−η
e2iφk −e2iφk0

e−iφk −e−iφk0

����
2

ðη¼−η0Þ: ð8Þ

The interaction VII0
kk0 ðωÞ is independent of spin s and moiré

valley ζ.
At low energies jωj < ωp;T , fη;−η > 0 indicates the

intervalley interaction between K and K0 (η ¼ −η0) is
attractive. In contrast, fη;η is on-average negative, and
one can prove that the intravalley interaction (η ¼ η0) is
repulsive in all pairing channels (see the Supplemental
Material [40] Sec. II C). This is due to the fact that the
hole (or electron) band projections of Hη;ζ;s

C3 and Hη;ζ;s
SOð2Þ in

Eq. (3) are odd and even under k;k0 → −k;−k0, or under
η → −η, respectively (see the Supplemental Material [40]
Sec. II C). Assume an electron state (wave packet) jk̄K;ζ;si
around momentum k̄ at valley K experiences a phonon-
induced lattice potential hHK;ζ;s

C3 ðk̄ÞiþhHK;ζ;s
SOð2Þðk̄Þi¼

UC3þUSOð2Þ. By symmetry, the state j − k̄K;ζ0;s0 i at the
same valley K will feel a potential −UC3 þUSOð2Þ, while
the state j − k̄K0;ζ0;s0 i in the opposite valley K0 will feel a
potential UC3 þ USOð2Þ. Therefore, two electrons jk̄K;ζ0;s0 i
and j − k̄K0;ζ0;s0 i in opposite valleys feel the same phonon-
induced lattice potential, which induces an effective attrac-
tion between them. In contrast, two electrons jk̄K;ζ0;s0 i and
j − k̄K;ζ0;s0 i in the same valley K feel different potentials
and, thus, have a weaker or even absent attraction.
Therefore, the intervalley Cooper pairing is preferred.
Since the interaction is degenerate with respect to indices

ζ and s, the intervalley pairing is not yet unique. Here we
simply assume the pairing is time reversal invariant, which
is generically more robust under nonmagnetic disorders
[49]. This yields an intervalley pairing amplitude of the
form (see the Supplemental Material [40] Sec. III)

Δηη0;ζζ0;ss0
k ¼ sδs;−s0δζ;−ζ0δη;−η0Δ̃ðηkÞ; ð9Þ

where Δ̃ðkÞ is a real function of φk ¼ argðkx þ ikyÞ.
Numerically, Δ̃ðkÞ can be solved and has the shape shown
in Fig. 3(c), which is nodeless and dominated by an s wave.
We note that an earlier optical phonon study [13] obtained
both s wave and d wave, while a recent atomistic study
supports s wave [50].
Substituting the realistic parameters into Eq. (7) and

taking kF ∼ kθ, we find that the phonon mediated inter-
valley attraction is of order −VII0

kk0 ð0Þ=Ωs ∼ 1 meV around
the magic angle, which is comparable to the Fermi energy
ϵF and the Debye frequency of acoustic moiré phonon
bands ℏωD ∼ ℏcTkθ ≈ 2 meV. When the optical phonon
contributions are included, the attraction could be further
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enhanced. Since the density of states (DOS) is as large as
ND ≳ 1 meV−1Ω−1

s at the magic angle, the BCS coupling
strength λ ≈ NDjVII0

kk0 j≳ 1 is strong. The screened Coulomb
interaction takes the form VeðqÞ ¼ 2πe2=qϵðqÞ, where ϵðqÞ
is the screened dielectric function at momentum q. Here
we simply adopt the (two-dimensional) Thomas-Fermi
approximation (see the Supplemental Material [40]
Sec. III) ϵðqÞ ≈ ϵIð1þ qTF=qÞ, where ϵI ≈ 2 ∼ 10 is the
dielectric constant of undoped graphene, and qTF ≈
2πe2ð∂ne=∂μÞ=ϵI ¼ 2πe2ND=ϵI is the Thomas-Fermi
momentum (ne and μ are the electron density and chemical
potential, respectively). With ND ≳ 1 meV−1 Ω−1

s around
the magic angle, qTF ≳ 50kθ ≫ q, so the screened Coulomb
potential VeðqÞ ≈ 2πe2=ϵIqTF ∼ N−1

D , yielding a Coulomb
coupling strength μc ≈ NDVeðqÞ ∼ 1. If we adopt the
McMillan formula for superconductor Tc [51,52], taking
λ ¼ 1.5 and μc ¼ 1, we obtain

Tc ¼
ℏωD

1.45kB
exp

�
−

1.04ð1þ λÞ
λ − μ�cð1þ 0.62λÞ

�
≈ 0.9 K ð10Þ

at the magic angle, where μ�c ¼ μc=½1þ μc lnðωpe=ωDÞ�
is the reduced Coulomb coupling strength, and
ωpe is the plasma frequency, which is roughly ℏωpe ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πneÞ1=2e2ϵF=ϵI

p
∼ 10ℏωD [53,54]. This agrees well

with the experimentally observed Tc. We do emphasize
that our Tc estimation is very rough, with inaccuracies from
both λ, μ�c, and the McMillan formula itself for large λ.
The above electron-phonon coupling calculation can be

easily generalized to other twist angles and electron
densities. We still keep only the nearest momentum
hoppings in the continuum model of TBG, but truncate
the Hamiltonian at sufficiently high momentum to obtain
more accurate band structures. We then numerically calcu-
late the energy change in each electron band under small
deformations of qj, and verify it is comparable to our

ab initio results (see the SupplementalMaterial [40] Sec. V).
Subtracting the contribution from moiré BZ deformations
(see the Supplemental Material [40] Sec. IV), we can
estimate the electron-phonon coupling of each band and
the BCS coupling strength λ ≈ NDVkk.
Figures 4(a) and 4(b) show the DOS ND and BCS

coupling strength λ with respect to the number of electrons
per superlattice unit cell n ¼ neΩs at θ ¼ 1.05°. The DOS
is predominantly high for the first conduction and valence
bands (jnj < 4). However, the BCS coupling λ for jnj < 4
and for jnj > 4 are of the same order, despite the fact that
the DOS is much lower (ND ∼ 0.05 meV−1Ω−1

s ) at jnj > 4.
This is because, for higher Moiré bands which have larger
band widths, their energy susceptibility to deformations is
also larger. For bands with band widths EW ≳ w, an order
estimation from perturbation theory yields a BCS coupling
strength λ ∼ ½ðNDz2w4Þ=ðMc2TE

2
WÞ� ∼ 0.5, where z ¼ 3 is

the number of nearest hopping momenta qj (see the
Supplemental Material [40] Sec. IV). This agrees with
the numerical magnitude in Fig. 4(b), and implies possible
BCS superconductivity at higher jnj. Figure 4(c) shows Tc
from the McMillan formula with respect to angle θ and
number of electrons per unit cell n. There is only a narrow
superconducting region at jnj < 4 near the magic angle,
which corresponds to the superconductivity observed in
TBG. In contrast, superconductivity of order 1 K may occur
in a wide range of θ ≳ 1° for jnj near 8 and higher, which
has not been carefully explored yet [55–59], and we expect
to be tested in future experiments. There are also parameter
spaces for θ < 1° where Tc is of order of 1K, e.g., 4≲ jnj ≲
8 near θ ¼ 0.8°, 2≲ jnj≲ 12 near θ ¼ 0.6°, and 8≲ jnj ≲
12 around θ ¼ 0.3°. The vast superconductivity region
indicates that the moiré pattern generically enhances the

(a) (b) (c)

FIG. 3. (a) The process two electrons of momentum k and −k
exchanges a phonon of momentum p ¼ k0 − k, which mediates
the electron-electron interaction in Eq. (7). (b) Illustration of
phonon-induced potentials for electrons at valleys K and K0
(which can be in different moiré valleys or the same moiré
valley), whereUS and�UC3 are contributed byH

η;ζ;s
SOð2Þ andH

η;ζ;s
C3 ,

respectively. The dashed circles represent the Fermi surfaces.
(c) Intervalley pairing Δ̃ðkÞ solved numerically as a function of
φðkÞ, which is s wave (see the Supplemental Material [40]
Sec. III).

(c)
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FIG. 4. (a) The density of states ND as a function of number of
electrons per superlattice unit cell n, showing the lowest con-
duction and valence bands are pretty flat. (b) The estimated BCS
coupling strength λ ≈ NDjVkk0 ð0Þj as a function of n. (c) The
superconducting Tc with respect to n and θ estimated from the
McMillan formula.
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electron-phonon coupling of all bands, and may explain the
possible superconductivity of HOPG. However, we do note
that other orders such as charge density wave may compete
with superconductivity in these parameter regimes.
Lastly, we comment that the strong phonon-mediated

attraction may favor a Bose-Mott insulator [39] for the
TBG insulating phase observed at jnj ¼ 2 [1,2]. This is
because the attraction may pair the electrons into charge 2e
bosons (Cooper pairs), and for jnj ¼ 2, the system has one
boson per unit cell and, thus, may form a Bose-Mott
insulator [39], with a possible charge density wave order.
Such a phase will have a resistivity around h=ð2eÞ2 ≈ 6kΩ
at the superconductor-insulator transition, due to charge 2e
carriers [60–62]. However, the experimentally observed
quantum oscillations [1] indicates these Cooper pairs have
to break down for magnetic fields above 1T, if this
explanation is correct.

The first-principles calculations performed for this Letter
were supported by the Department of Energy Grant No. DE-
SC0016239. B. L. is supported by Princeton Center for
Theoretical Science at Princeton University. Z. W. acknowl-
edges the support from the CAS Pioneer Hundred Talents
Program. B. B. is supported by the Department of Energy
Grant No. DE-SC0016239, the National Science
Foundation EAGER Grant No. DMR 1643312, Simons
Investigator Grants No. 404513, No. ONR N00014-14-1-
0330, and No. NSF-MRSEC DMR-142051, the Packard
Foundation, and the Schmidt Fund for Innovative Research.

[1] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional supercon-
ductivity in magic-angle graphene superlattices, Nature
(London) 556, 43 (2018).

[2] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated
insulator behaviour at half-filling in magic-angle graphene
superlattices, Nature (London) 556, 80 (2018).

[3] E. SuárezMorell, J. D. Correa, P. Vargas,M. Pacheco, and Z.
Barticevic, Flat bands in slightly twisted bilayer graphene:
Tight-binding calculations, Phys. Rev. B 82, 121407(R)
(2010).

[4] R. Bistritzer and A. H. MacDonald, Moiré bands in twisted
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