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The thermal conductivity of classical multicomponent fluids is seemingly affected by the intrinsic
arbitrariness in the definition of the atomic energies, and it is ill conditioned numerically, when evaluated
from the Green-Kubo theory of linear response. To cope with these two problems, we introduce two new
concepts: a convective invariance principle for transport coefficients, in the first case, and multivariate
cepstral analysis, in the second. A combination of these two concepts allows one to substantially reduce the
noise affecting the estimate of the thermal conductivity from equilibrium molecular dynamics, even for
one-component systems.
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The transport properties of macroscopic systems are
determined by the dynamics of conserved currents, i.e., of
the long-wavelength components of the currents associated
with the densities of conserved extensive variables [1,2].
Let Ji be the macroscopic average of the ith conserved
current, which from now on we dub a (conserved) flux. In
the case of heat transport in an M-component fluid, the
relevant conserved quantities are the total energy and the
total number (or mass) of molecules of each independent
component. As the total-mass flux is the total momentum,
which is also a constant of motion, the number of relevant
conserved fluxes is reduced from M þ 1 to M: energy,
which we label as the zeroth, and M − 1 convective fluxes,
which can be identified with any independent linear
combinations of the molecular mass or number fluxes.
In the linear regime, the relevant fluxes are linear combi-
nations of the corresponding conjugate affinities Fi,
defined as the gradients of the intensive variables conjugate
to the conserved ones. These are the inverse temperature
for the energy and the chemical potential divided by the
temperature for the molecular numbers. The resulting
Onsager relations [3] read

Ji ¼
XM−1

j¼0

ΛijFj; ð1Þ

where, in order to simplify the notation, the vector character
of fluxes and affinities has been overlooked or their
Cartesian indices are incorporated in the suffixes. The
Green-Kubo (GK) theory of linear response [2,4,5] states
that the Λmatrix in Eq. (1) can be expressed in terms of the
time correlation functions of the various flux processes J i,
which are phase-space functions, as

Λij ¼ V
kB

Z
∞

0

hJ iðtÞJ jð0Þidt; ð2Þ

where kB is the Boltzmann constant, V is the system’s
volume, h·i indicates a canonical average, and the system is
in thermodynamic equilibrium [2]. Here and in the follow-
ing, processes and their samples will be denoted by
calligraphic letters, as in “X ,”while their average properties
by roman ones, as in “X.” For instance, Ji ¼ hJ ii, which
vanishes in the absence of perturbations. The heat con-
ductivity is defined as the ratio between the heat flux JQ

and the temperature gradient that generates it: JQ ¼ −κ∇T,
in the absence of net particle flow. The heat flux is defined
as J Q ¼ J 0 −

P
M
s¼1 h

sJ s, where J 0 and J s are the
energy and particle-number flux samples of all molecular
species, respectively, and hs are the corresponding partial
enthalpies [6]. The energy flux is defined in terms of atomic
positions Rn, velocities Vn, and energies ϵn as [2,7]

J 0 ¼ 1

V

�X
n

Vnϵn þ
X
n;m

ðRn −RmÞFnm · Vn

�
; ð3Þ

where Fnm ¼ −∂ϵm=∂Rn and n runs over all the atoms.
In solids and one-component fluids, energy is the only

conserved quantity relevant to heat transport, because the
convective fluxes either vanish or do not contribute to
energy transport [2]. In these cases, the thermal conduc-
tivity is basically given by κ ¼ Λ00=T2. As the energy flux
[Eq. (3)] is obtained via the continuity equation from the
energy density, which is ill defined at the atomic scale, it
has long been feared that no quantum-mechanical expres-
sion for the heat conductivity could be obtained from first
principles. This apparent conundrum was solved only
recently by the introduction of a gauge invariance principle
for transport coefficients, according to which different
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energy densities integrating to the same total energy give
rise to fluxes that differ one from the other by the total
derivative of a bounded vector, which does not contribute to
the value of Λ00 in Eq. (2) [2,8]. The situation is not nearly
as clear when one considers the intrinsic indeterminacy in
the definition of the atomic energies. When the energies
of all the atoms of a same species, say, the sth, are shifted
by the same self-energy δs, not depending on the atomic
environment [i.e., ϵn → ϵn þ δsðnÞ, where n is an atomic
index], it is to be expected that all the transport properties
remain unchanged. For instance, in a quantum-mechanical
simulation, the heat conductivity cannot depend on whether
atomic cores contribute to the definition of the atomic
energy, as they would in an all-electron calculation, or
not, as theywouldwhen using pseudopotentials. In the latter
case, the energy of isolated atoms would depend on the
specific form of pseudopotential adopted, which is to a large
extent arbitrary, but the heat conductivity in all cases should
not. When the atomic energy of the sth species is shifted as
above, the energy flux is modified asJ 0 → J 0 þP

sδ
sJ s.

When only one atomic component is present, J s is propor-
tional to the total, conserved, momentum, which can be
assumed to vanish identically, so that Λ00 is independent of
atomic self-energies. A slight generalization of this argu-
ment allows one to arrive at the same conclusion in the one-
component molecular case [2,9].
In multicomponent fluids, the convective fluxes of

individual species are not identically vanishing. As a
consequence, the expressions for J 0 and J Q do not
coincide, and the Onsager coefficients Λ0i are affected
by the spurious atomic self-energies, as described before.
The Green-Kubo integrals ΛQi [see Eq. (2)] computed from
the heat flux, instead, would remain unaffected, because the
self-energy contributions to the partial enthalpies cancel
their contribution to the energy flux. It seems, therefore,
that spurious self-energy effects can be disposed of, at the
price, however, of computing partial enthalpies, a rather
cumbersome task [10], which had better be avoided. In
practice, heat conductivities are usually measured in con-
ditions of vanishing mass transport, where the average JQ

and J0 do coincide, making one hope that the computation
of partial quantities (energies or enthalpies; see Ref. [11])
can indeed be bypassed. To see this more formally, we
impose that the convective fluxes in Eq. (1) vanish and
solve for the energy flux. This is best achieved by
partitioning the Λ matrix into a 1 × 1 energy block and
an ðM − 1Þ × ðM − 1Þ convective block and by performing
a block inversion. The resulting expression for the heat
conductivity is

κ ¼ Λ̄0

T2
; ð4Þ

where Λ̄0 ¼ 1=ðΛ−1Þ00 ¼ Λ00 −
P

M−1
i;j¼1 Λ0iðΛ−1

M−1ÞijΛj0 is
the inverse of the energy block of Λ−1, that is to say, the

Schur complement of the convective block (SCCB) in
Λ [12]. Using standard matrix manipulations and the
bilinearity of Λij with respect to the fluxes, it is straightfor-
ward to verify that the SCCB, and hence the heat
conductivity, is invariant with respect to the addition of
any linear combinations of convective fluxes to the energy
flux: J 0 → J 0 þP

M−1
m¼1 c

mJ m, while the whole Λ matrix
is not. We dub this remarkable property the convective
invariance of heat conductivity in multicomponent sys-
tems. An important consequence of convective invariance
is the independence of the heat conductivity on atomic self-
energies, thus solving the first of our problems. Another
important consequence is that the heat conductivities
computed from the heat or energy fluxes coincide, thus
dispensing us from the task of computing partial enthalpies
to evaluate the former.
Having thus cleared the way, we now move to evaluating

Eq. (4) from equilibrium molecular dynamics (EMD).
In order to be specific and streamline the discussion,
we specialize Eq. (4) to the two-component case:
κ ¼ ½Λ00 − ðΛ10Þ2=Λ11�=T2. This expression is very sensi-
tive to the statistical errors affecting the matrix elements
appearing therein, because it is the difference of two
positive numbers whose magnitude may be comparable
and because the errors affecting each of them may be large
and difficult to estimate [13–16].
In order to cope with the latter problem, we have

generalized to multivariate processes our cepstral analysis
approach to evaluating transport coefficients from EMD
[2,17]. Cepstral analysis [18] is a technique, commonly
used in signal analysis and speech recognition, to process
the power spectrum of a time series, leveraging its smooth-
ness and the statistical properties of its samples. In the one-
component case, according to Eqs. (1) and (2), a transport
coefficient is proportional to the zero-frequency value of
the power spectrum of the appropriate flux: κ ∝ Sðω ¼ 0Þ,
where SðωÞ ¼ R∞

−∞ eiωtCðtÞdt and CðtÞ ¼ hJ ðtÞJ ð0Þi is
the flux time autocorrelation function. The Wiener-
Kintchine theorem [19] states that SðωÞ is asymptotically
proportional to the expectation of the squared modulus of
the truncated Fourier transform of the flux sample:
SðωÞ ¼ limτ→∞hSτðωÞi, where SτðωÞ ¼ ð1=τÞjJ̃ τðωÞj2
is the sample spectrum and J̃ τðωÞ ¼

R
τ
0 J ðtÞeiωtdt. In

the long-time limit, SτðωÞ is a process whose values
are independent for ω ≠ ω0 and individually distributed
as SτðωÞ ¼ SðωÞξðωÞ, where ξðωÞ ∼ 1

2
χ22, χ22 being a

chi-square variate with two degrees of freedom. The
multiplicative nature of the noise affecting the sample
spectrum suggests that the power of the noise can be
reduced by applying a low-pass filter to its logarithm.
In cepstral analysis, this idea is leveraged to devise a
consistent and asymptotically unbiased estimator for
the zero-frequency value of the flux power spectrum,
which is proportional to the transport coefficient we are
after [2,17].
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In the multicomponent case, an EMD simulation sam-
ples M stationary stochastic processes, J i ði ¼ 0;…;
M − 1Þ, one for each conserved flux, which can be thought
of as different components of the same multivariate
process. For such a process, it is customary to define a
cross time-correlation function CijðtÞ ¼ hJ iðtÞJ jð0Þi and
a cross power spectrum SijðωÞ ¼ limτ→∞hSij

τ ðωÞi, where
Sij
τ ðωÞ¼ð1=τÞJ̃ i

τðωÞ�J̃ j
τðωÞ is the sample cross-spectrum

of the multivariate process. The Onsager coefficients of
Eq. (2) are proportional to the zero-frequency values of
the cross-spectrum, Sij0 ¼ Sijðω ¼ 0Þ: Λij ¼ ðV=2kBÞSij0 .
Equation (4) shows that, in order to evaluate the heat
conductivity in the multicomponent case, one needs an
efficient estimator for the SCCB in S0. In analogy with
Eq. (4), we indicate the SCCB in SðωÞ and in SðωÞ as
S̄0ðωÞ and S̄0ðωÞ, respectively, which in the following will
be dubbed the reduced (sample) spectrum. Their zero-
frequency values will be labeled as S̄00 and S̄

0
0, respectively.

Mind the difference between the power spectrum, denoted
by SðωÞ, and its sample, denoted by SðωÞ.
In analogy to the univariate case, the reduced sample

spectrum can be shown to be a process distributed like

S̄0ðωÞ ∼ S̄0ðωÞξðωÞ; ð5Þ

where the ξ’s are independent identically distributed
random variables, ξ ∼ ð1=νÞχ2ν, χ2ν being the chi-square
distribution with ν ¼ 2ðl −M þ 1Þ degrees of freedom,
where M is the number of conserved fluxes and l ≥ M is
the number of flux samples used to sample the spectrum.
This means that the above formulas apply to an effective
sample spectrum, defined as the average over l indepen-
dent samples of the spectrum. For instance, in an isotropic
fluid one has one equivalent flux process per Cartesian
component (l ¼ 3); multiple flux samples can be created
either by running multiple EMD trajectories for different
initial conditions or, equivalently, by breaking a long
trajectory into multiple segments. Equation (5) shows that
the reduced sample spectrum is an unbiased estimator of
the reduced spectrum [hξðωÞi ¼ 1]. Unfortunately, this
estimator is not consistent, in that its variance does not
vanish when the length of the time series grows large and is
actually independent of it. In order to reduce the power of
the noise and obtain a consistent estimator of the reduced
spectrum, we apply a low-pass filter to its logarithm. To this
end, one first performs a (inverse) Fourier transform of the
logarithm of the reduced spectrum, and one retains a
number of coefficients P� equal to the estimated number
of nonvanishing Fourier coefficients of the logarithm of the
reduced spectrum. By doing so, the estimator of the heat
conductivity we are after, K, and its statistical uncertainty
can be expressed as

K ¼ V
2kBT2

exp

�
C0 þ 2

XP�−1

n¼1

Cn − L0

�
;

Δκ
κ

¼ σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P� − 2

N

r
; ð6Þ

where the C’s are the (inverse) Fourier coefficients of the
logarithm of reduced sample spectrum, L0¼hlogðξÞi¼
ψðl−Mþ1Þ−logðl−Mþ1Þ, and σ20¼hlogðξÞ2i−L2

0¼
ψ 0ðl−Mþ1Þ, ψ and ψ 0 being the di- and trigamma
functions [20], respectively. A thorough derivation of the
above formulas as well as a detailed description of the work
flow for the analysis of the data produced by EMD
simulations are presented in Supplemental Material [21].
In order to validate our methodology, we have computed

the thermal conductivity of an equimolar water-ethanol
mixture. Not aiming at an optimal description of the
system, but just at a realistic benchmark, we used the
OPLS (optimized potentials for liquid simulations) all-atom
flexible force field [30]. Classical EMD simulations were
run with the LAMMPS package [31] at a temperature of
≈350 K and a density of 0.80 g=cm3, corresponding to
800þ 800 molecules in a cubic cell with an edge
of 47.47 Å.
In Fig. 1, we report the energy-flux spectrum of our water-

ethanol model. The gray line indicates the diagonal element of
the raw sample spectrum, computed from a 100 ps trajectory,
which is too noisy to be used as an estimator. Performing a
moving average [32] of the sample spectrum would consis-
tently reduce the noise, at the price, however, of requiring
much longer trajectories (the blue line reports an average
performed from a 28 ns trajectory) and introducing a bias that
is difficult to evaluate and remove. Note that while at a
high frequency, where the spectrum is dominated by intra-
molecular vibrations, the energy-energy diagonal element of

FIG. 1. Energy flux of a water-ethanol mixture. Gray: Energy-
flux sample power spectrum from a 100 ps trajectory. Red and
blue lines: Moving averages over a window of 0.2 THz of the
energy-flux power sample spectrum and of the SCCB of the
sample cross-spectrum, computed from a long (28 ns) trajectory.
Inset: Low-frequency region of the spectrum.
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the cross-spectrum (red line) and the SCCB coincide, in the
low-frequency region, which is characterized by a strongly
diffusive behavior, the two differ markedly and only the latter
is meaningful to estimate κ. In Fig. 2, we report the thermal
conductivity of the water-ethanol solution computed from
Eq. (4) as a function of the upper limit of integration in Eq. (2)
and as obtained from a 100 ps EMD trajectory. The spikes in
the estimated conductivity result from the vanishing of theΛ11

denominator inEq. (4),which is, in turn, due to the fact that the
integrals of the correlation functions in Eq. (2) behave as
random walks as soon as the integrand vanishes, eventually
assuming any value. This behavior can be partially corrected
by replacing the GK estimate of the Onsager coefficients
through Eq. (2) with an equivalent one, based on the Einstein-
Helfand relation [2,33], which is statistically better behaved
(orange line): Λij ¼ limτ→∞

V
2kBτ

hR τ
0 J

iðtÞdt R τ
0 J

jðtÞdti.
Even so, the statistical accuracy that can be achieved with
even longer trajectories is totally inadequate.
Cepstral analysis was performed over a 100 ps EMD

trajectory using the THERMOCEPSTRUM open-source code,
which is freely available for download [34]. We set l ¼ 3
(Cartesian components) and M ¼ 2 (number of conserved
fluxes), thus obtaining L0 ¼ ψð2Þ − logð2Þ ≈ −0.270 and
σ20 ¼ ψ 0ð2Þ ≈ 0.644. The cutoff frequency [17] used for
cepstral analysis, and ensuring convergence in κ, was
ω�=2π ≈ 35 THz. The number of cepstral coefficients P� ≈
45 was estimated from the Akaike information criterion
[17,35]. The final estimate of the heat conductivity result-
ing from Eqs. (6) is κ ¼ 0.34� 0.04 W=ðmKÞ. In order to
validate our statistical analysis, cepstral analysis was
repeated for all the 100 ps extracted from a 28-ns-long
trajectory, confirming the normal distribution of the esti-
mated conductivity and the value of the relative error. The
small relative error (13%) achieved by analyzing trajecto-
ries as short as 100 ps shows that cepstral analysis opens the

way to heat-transport simulations using ab initio EMD even
in multicomponent systems. Our analysis equally applies to
systems with any number of components in any charge
state, because the SCCB is invariant under any nonsingular
linear transformation of the convective fluxes. This implies
that in binary molten salts and ionic fluids the electric
current, which is a linear combination of mass and number
fluxes, can be taken as a proxy of the convective fluxes.
An application to molten sodium chloride is presented in
Supplemental Material [21].
Multivariate cepstral analysis turns out to be instrumen-

tal in heat-transport simulations even for one-component
systems. The recently discovered gauge invariance of heat
conductivity [8] means that, while transport coefficients are
largely independent of the detailed form of the energy flux,
the flux power spectrum and the resulting statistical
properties of the estimator do depend on it. The question
then naturally arises of how to choose the form of the flux
so as to optimize these statistical properties. In the case of
ab initio water [8], for instance, the total power of the
energy flux derived from density-functional theory (DFT)
is so large as to make the statistical analysis of its spectrum
at a low frequency intractable, due to large atomic self-
energies [9] that cannot be easily defined and eliminated in
ab initio simulations. A couple of ad hoc solutions to this
problem have been devised [8,9], leveraging gauge invari-
ance to subtract from the energy flux a linear combination
of “inert” fluxes not contributing to heat transport (such as
the electronic flux or the mass flux of one of the two atomic
species). While this remedy was effective and actually
allowed one to get meaningful results from relatively short
trajectories, the question remains of how to optimally
choose this linear combination. Multivariate cepstral analy-
sis provides the answer. The idea is to compute, along with

FIG. 2. Thermal conductivity of a water-ethanol solution
[Eq. (4)] as a function of the upper limit of integration in
Eq. (2). The shaded areas indicate the estimated statistical error.
Green: Direct estimate from Eqs. (2) and (4). Orange: Estimate
from the Einstein-Helfand relation; see the main text. Purple:
Cepstral analysis estimate.

FIG. 3. Multivariate analysis of ab initio water. The sample
power spectrum of the DFT energy flux would be out of scale and
numerically intractable. Blue: SCCB of a two-component analy-
sis performed with the total momentum of the oxygen atoms as an
inert flux. Orange: Three-component analysis, where the third
flux is the electronic adiabatic current. Both are filtered with a
moving average of width 1 THz. In the inset, the spectrum
obtained from cepstral analysis is displayed in dashed lines.
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the energy flux to be analyzed, a number of inert fluxes and
treat all of them on a par as though they were conserved
fluxes of a multicomponent system: The total power of the
SCCB will be considerably reduced, thus making the
cepstral analysis feasible at a low frequency. This is
illustrated in Fig. 3, where we report the multivariate
power spectrum of ab initio (heavy) water, computed using
the total momentum of the oxygen atoms as an inert flux
(blue), as well as this and the adiabatic electronic current as
inert fluxes (orange). The simulation setting is the same as
in Ref. [8]. The spectrum of the bivariate SCCB is always
larger than the trivariate one. Using cepstral analysis, the
zero-frequency limits of these two spectra coincide, as they
must, whereas their running averages do not and depend
sensitively on the width of the frequency window. The
heat conductivities estimated by cepstral analysis are
ð0.74� 0.16Þ and ð0.69� 0.18Þ W=ðmKÞ, respectively,
while the experimental value is 0.61 W=ðmKÞ [36].
We conclude by noticing that the combination of the

newly devised convective invariance and multivariate
cepstral analysis, besides providing fresh theoretical insight
in transport phenomena, will hopefully broaden the scope
of heat-transport simulations to complex multicomponent
fluids, as well as provide new tools to make ab initio
simulations possible.
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