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Laser dynamics encompasses universal phenomena that can be encountered in many areas of physics,
such as bifurcation and chaos, mode competition, resonant nonlinearities, and synchronization—or locking—
of oscillators. When a locking process occurs in a multimode laser, an optical frequency comb is
produced, which is an optical spectrum consisting of equidistant modes with a fixed phase relationship.
Describing the formation of self-starting frequency combs in terms of fundamental laser equations
governing the field inside the cavity does not allow one, in general, to grasp how the laser synchronizes
its modes. Our finding is that, in a particular class of lasers where the output is frequency modulated
with small or negligible intensity modulation, a greatly simplified description of self-locking exists.
We show that in quantum cascade lasers—solid-state representatives of these lasers characterized by an
ultrashort carrier relaxation time—the frequency comb formation obeys a simple variational principle,
which was postulated over 50 years ago and relies on the maximization of the laser output power.
The conditions for the breakdown of this principle are also experimentally identified, shedding light on
the behavior of many different types of lasers, such as dye, diode, and other cascade lasers. This discovery
reveals that the formation of frequency-modulated combs is an elegant example of an optimization

problem solved by a physical system.
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In various solid-state and gas lasers, multiple modes can
reach the lasing threshold and oscillate simultaneously.
These modes are in general not independent of each other
but instead are coupled through a nonlinear process, such as
nonlinear gain saturation of the laser medium [1] or
nonlinear absorption of a saturable absorber [2], if one
is present in the cavity. Mode coupling leads in turn to a
well-defined phase relationship among the modes giving
origin to an optical frequency comb [3-7]. These relative
phases could be in principle determined by solving the
coupled nonlinear equations governing the field inside the
cavity, known as Lamb’s self-consistency equations [8,9],
but this is a nontrivial task even for the basic case of a field
constituted of three modes. In the 1960s Statz, DeMars, and
Tang, motivated by their observation of spiking in ruby
lasers [10], investigated self-locking in multimode lasers
and proposed a simplified description of this process
[11,12]. This was formulated as the “maximum emission
principle” (MEP) and stated that the laser operates in such
way as to maximize the mean optical power output from the
device [13,14]. This condition corresponds to the fastest
growth of stimulated emission and thus should be estab-
lished most rapidly in the laser. In terms of laser perfor-
mance, it implies that the linewidth of all of the modes of
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the frequency comb is minimized, as this is inversely
proportional to the total output power of the laser [15,16].
The MEP can be understood as follows. Consider a
multimode field represented by a sinusoidally modulated
waveform of period T, impinging on a slab of gain
medium [Fig. 1(a)]. The dynamic response of the popula-
tion inversion in the gain medium to the intensity modu-
lation will depend, in first approximation, on how the
carrier relaxation time (7)) of the medium compares
with Ty, Figure 1(b) shows two limiting cases: when
T,, > T, the population inversion shows large oscilla-
tions in antiphase with the intensity, and in this situation the
mean extracted power is maximized for zero modulation
depth; on the other hand, when T\, is of the order of T},
the phase delay between the population inversion and
the intensity decreases to a value close to z/2, and the
amplitude of population oscillations is suppressed. In this
case the power extraction is independent of the modulation
depth. In essence, the MEP can be regarded as a variational
principle stating that the type of waveform chosen by the
laser is the one maximizing the laser output power (see
Sec. II of the Supplemental Material [17]).

Despite its intuitive appeal, the MEP is not true in
general. In 1969 Schwarz and Gordon [32] employed the
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FIG. 1. Laser self-locking in terms of a variational principle.
(a) An intensity modulated wave with period 7', impinges on a
slab of laser gain medium, represented as a two-level system with
carrier relaxation time 7'y, and becomes amplified. This modu-
lation typically results from locking of the laser cavity modes.
For simplicity, the resonator mirrors and the waveform circulation
in the laser cavity are not shown. (b) Depending on how T,
compares with 7'y, the population inversion in the gain medium
responds with a different amplitude and phase delay A¢ to the
intensity modulation. The power extracted from the gain medium
and averaged over T\, is plotted as a function of the intensity
modulation depth (/,,,4) for two limiting cases: 7', > T (blue),
Tyep ~ Ty (red). According to the maximum emission principle,
the laser optimizes the phase relationship among its modes in
order to maximize the extracted power. When T, > T, this is
equivalent to minimizing /4. (¢) The equations governing the
field inside the laser cavity can be rewritten as the equations of
motion of a dynamical system, where the generalized coordinates
are the complex amplitudes of the laser (4), corresponding to (top
panel) modal amplitudes and (bottom panel) phases, which are
arbitrarily chosen here for illustration. Based on this formalism,
the system describes a trajectory in configuration space which
satisfies a variational principle for small perturbations of the
motion 6A. Owing to the periodic output of frequency combs, the
trajectory is a loop covered in a period 7. (d) Characteristic
timescales of the repetition period (T,) and effective carrier
relaxation time under operation (7') of different types of lasers:
solid-state (red), semiconductor (blue), gas (orange), and dye
(green) lasers.

formalism of classical mechanics to reexpress Lamb’s
self-consistency equations [8] as the equations of motion
of a dynamical system, where the generalized coordinates
correspond to the set of complex amplitudes of the laser
A = (Ay,...,A,), with each giving the modulus and phase
of a laser mode. Using a variational method, they restated
the equations of motion of the laser as an extremum
condition, which is essentially a modified form of
Hamilton’s principle of least action: the laser describes a
trajectory in configuration space that minimizes a path
integral [32] under small changes 0A [Fig. 1(c)]. With this
approach the authors showed that in general the extremum
condition does not coincide with the MEP. However, they
also obtained that in presence of restrictive hypotheses—in
particular, if one assumes an infinitely short 7,—then the
MEP and Hamilton’s principle result in identical equations.

An infinitely short 7| is a theoretical limit. This con-
dition can be restated in terms of real laser parameters as
T\, >T,, where T, is the characteristic period of
intermodal beats, usually given by the round-trip time of
the laser [33] (see Sec. V of the Supplemental Material
[17]). Figure 1(d) illustrates typical timescales of these
parameters for common lasers [33,34]. The carrier lifetime
can be shortened by the presence of light in the cavity due
to stimulated emission [35,36]; here 7, indicates the
effective carrier lifetime under laser operation. Clearly,
the hypothesis required for the validity of the MEP does not
hold in ruby lasers due to their slow population relaxation
(=1 ms)—much longer than their round-trip time (~1 ns)—
nor does it in other solid-state lasers [e.g., neodymium-doped
yttrium aluminum garnet (Nd:YAG), Ti:sapphire] or in
molecular lasers (e.g., CO,). Also appearing in Fig. 1(d)
is a number of lasers which exhibit a short carrier relaxation
time and lie in proximity to the 7 = T\, line. Some of these
are conventional semiconductor lasers (e.g., InGaAs-based
diode lasers), while others are known as adiabatic or class-A
lasers [33,37]. Examples of these lasers are He-Ne, Art,
rhodamine-6G, quantum cascade, and interband cascade
lasers (the last have been shown to exhibit a fast dynamics
only recently [38]). Some experimental studies based on
different autocorrelation techniques in rhodamine-6G dye
lasers [39], InAs-based Q-dash lasers [40], and interband
cascade lasers [38] indicated that their output is predomi-
nantly frequency modulated [36] and that intensity modu-
lation tends to be suppressed, in agreement with the MEP.
However, in the region of the (T, T) scatter plot corre-
sponding to these lasers, the MEP is at the limit of its
applicability, and it is thus difficult to reach unambiguous
conclusions on its validity.

Quantum cascade lasers (QCLSs) are on the other hand an
ideal model system to study the MEP, as they feature a
unique combination of physical properties. In addition to an
ultrashort 7 (=1 ps) [41], these lasers exhibit homo-
geneously broadened transitions and spatial hole burning
effects [42], allowing multimode operation, and a resonant
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FIG. 2. Quantum cascade laser harmonic frequency comb obeying the maximum emission principle. (a) Autocorrelation measurement
of a quantum cascade laser. The setup consists of a Michelson interferometer. When a linear photodetector (1-PD) measures its output as
a function of interferometric delay, the linear autocorrelation trace is obtained. Its Fourier transform gives the optical spectrum of the
laser, which shows a harmonic frequency comb with 8 FSR (44 GHz) skipped between the lasing modes. When the output of the
interferometer is measured using a quadratic photodetector (2-PD), the second-order autocorrelation trace is obtained. Combining these
measurements with a phase retrieval algorithm allows one to reconstruct the temporal waveform of the laser. (b) Amplitude, temporal
phase, and instantaneous frequency (shifted by the carrier frequency of the laser, f.) of the time-domain waveforms as obtained from the
experimental reconstruction and from the best solution found by an optimization algorithm. (c) The optimization algorithm takes
the spectrum of the laser and a random choice of the modal phases ((?)random; an example is shown here) and finds the local minimum of
the objective function 6;/(I), where ¢, and (I) are the standard deviation and average over T, of the time-domain intensity. This is
equivalent to searching the set of modal phases that minimizes intensity modulation and maximizes the laser output power. Also shown
is a histogram representing the minima found over 10 000 random searches. (d) Illustration of the harmonic waveform circulating inside

the laser cavity. In this example the repetition period (Tp) is 1/5 of the cavity round-trip time (7).

third-order nonlinear susceptibility, enabling a variety of
frequency comb regimes with different 7', [1,43]. In this
Letter we study the temporal nature of QCL frequency
combs with different frequency separation between the
modes by means of nonlinear autocorrelation experiments.
After retrieval of the modal phases, we obtain the result that
when the hypothesis T, > T, is satisfied, the phase
relationship chosen by the laser is such that it minimizes
intensity modulation, thus constituting the first definite
experimental verification of the MEP.

We begin by investigating QCLs operating in the
harmonic frequency comb regime [44,45], where, unlike
with dense frequency combs, the repetition rate 7'y, =
T/ N is a fraction of the cavity round-trip time T; given by
the number N of skipped free spectral ranges (FSRs)
between the lasing modes [Fig. 2(d)]. The carrier relaxation
time of these devices is 7} = 0.6 ps, as calculated from
band structure simulations. Our characterization of the laser
waveform relies on a second-order autocorrelation meas-
urement [46] [Fig. 2(a)]. The setup is based on a Michelson
interferometer. When a linear detector is placed at its
output, the optical spectrum of the QCL is obtained.
Figure 2(a) shows the harmonic frequency comb generated
by the first studied device, exhibiting a spacing of 8§ FSR
(44 GHz, T, = 23 ps). When the output is measured by a

quadratic detector, the second-order autocorrelation trace is
obtained. These measurements constitute a sufficient data-
set to reconstruct the temporal waveform of the laser by
means of a phase retrieval algorithm [47] (see Secs. 1 and 4
of the Supplemental Material [17]). The reconstructed
waveform is shown in Fig. 2(b). A nearly constant
amplitude is observed, together with an approximately
linear frequency chirp—a feature also seen in dense QCL
frequency combs [48,49].

The temporal character of the laser output depends on the
type of phase relationship existing among the modes of the
frequency comb. For instance, if a linear phase relationship
is arbitrarily imposed on the modes of the experimental
spectrum, the laser waveform becomes a train of transform-
limited pulses with a peak-to-background intensity ratio
of 100 (see Fig. S5a in the Supplemental Material [17]).
This raises the following question: how does the laser set its
modal phases? According to the MEP, since 7', > T for
this device, it should operate in such a way as to minimize
the intensity modulation [Fig. 1(b)]. We want to verify
this statement. In principle one could think that both
modal amplitudes and phases are degrees of freedom of
the system on which the laser can act to minimize intensity
modulation. If this were the case, ideal solutions would
be represented by frequency-modulated (FM) and phase
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modulated waves with constant amplitude, which have
well-defined spectra. For instance, in the case of FM waves
the spectrum is given by Bessel functions [50]. However,
we argue that the laser cannot attain these ideal regimes
due to constraints on the amplitudes, which originate from
the specific gain profile of the laser and mechanism of
multimode generation and frequency comb formation.
Instead, the problem we want to solve is to find, given
the experimental spectrum of the laser, the best set of modal
phases which minimizes amplitude modulation. For this
purpose we implement an optimization algorithm whose
objective function [51] is 6;/(I), where o; is the standard
deviation of the time-domain intensity, and (/) its time-
averaged value over T,,. The algorithm starts with a random
guess for the modal phases [Fig. 2(c)], then computes the
time-domain electric field by inverse Fourier transform to
evaluate the objective function and proceeds iteratively until
it finds a local minimum (see Sec. I in the Supplemental
Material [17]). After 10 000 random searches we find that
the best solution to the optimization problem closely
matches the experimentally reconstructed waveform, in
terms of both the value of the objective function (7% in
the optimization, 9% in the reconstruction) and the type of
frequency chirp [Fig. 2(b)]. This finding indicates that the
complex process of self-locking in the laser obeys the MEP.

Next, we want to investigate how the laser operates when
the hypothesis 7', > T is not satisfied. For this study we
utilize a second QCL having the same 7'; of the device
studied above, but operating in a harmonic frequency comb
regime with a spacing of 156 GHz [28 FSR, T, = 6 ps,
Fig. 3(b)]. The phase and amplitude of population oscil-
lations in the laser are determined by the phase and real part
of the third-order nonlinear susceptibility [44], usually
denoted as y®. These quantities are calculated as a
function of modulation frequency as shown in Fig. 3(a),
where we marked, in particular, the ) response corre-
sponding to a temporal modulation with period 7', (see
Sec. V in the Supplemental Material [17]). The main point
to stress here is that in this frequency comb regime the
population inversion can no longer follow the intensity
modulation exactly in antiphase. As the MEP cannot be
rigorously derived from the fundamental Hamilton’s prin-
ciple, it thus should start losing its validity [32]. Figure 3(c)
shows the temporal waveform emitted from the QCL,
which has been reconstructed using the same technique
presented above. The intensity modulation depth is 16%,
and the frequency chirp exhibits irregular oscillations.
Interestingly, by carrying out the same optimization routine
as described above, we find that a set of modal phases exists
that gives a considerably smaller intensity modulation
depth (3%) than the experimentally measured one
[Fig. 3(c)]. This result shows that with increasing ratio
of Ty /T, the MEP provides predictions that are increas-
ingly less accurate [cf. Figs. 2(b) and 3(c)]. The laser
behavior observed here, in particular the fact that amplitude
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FIG. 3. The maximum emission principle starts losing its

validity. (a) Phase (top panel) and real part (bottom panel) of
the third-order nonlinear susceptibility y(* as a function of
modulation frequency calculated using the experimental laser
parameters. The marker indicates the fundamental modulation
frequency of the studied laser frequency comb having an
intermodal spacing of 1/7\, = 156 GHz. (b) Spectrum of the
QCL operating in the harmonic regime. (c) Amplitude, temporal
phase, and instantaneous frequency of the time-domain wave-
forms obtained from the experimental reconstruction and from
the best solution found by the optimization algorithm. Unlike the
case shown in Fig. 2, here the reconstruction and optimization
results do not match, indicating that the maximum emission
principle stops providing accurate predictions.

modulation is not perfectly minimized, is expected to be
representative of other types of lasers operating in a similar
region of the scatter plot of Fig. 1(d); i.e., it is close to the
T) = Ty line.

To further generalize our findings, we turn our attention
to dense frequency combs of QCLs, in which T, is fixed
by T, and is typically of the order of hundreds of pico-
seconds, and thus much larger than the subpicosecond 7.
We analyze the case of a self-locked midinfrared QCL
frequency comb (7, = 115 ps), whose waveform is
reconstructed using a coherent beat note spectroscopy
technique [48,49], giving an intensity modulation depth
of 22% and a linear frequency chirp (see Sec. VI in the
Supplemental Material [17]). We want to verify by means
of an optimization algorithm whether the phase relationship
chosen by the laser gives a minimal intensity modulation,
as predicted by the MEP. This task is computationally more
demanding with respect to the case of harmonic frequency
combs since the much larger number of lasing modes
characteristic of dense frequency combs (typically, hun-
dreds) simultaneously increases the dimension of the
configuration space and the typical iteration time of the
algorithm (approximately by a factor of 1000). The best
solution found over 1000 random searches lies in close
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proximity to the experimental results in terms of intensity
modulation depth (see Sec. VI in the Supplemental Material
[17]), indicating that, to the best of our computation
capabilities, the laser obeys the MEP also when operating
in the dense frequency comb regime. Even though it has been
known for some time that intensity tends to be suppressed at
the output of QCLs [52], our studies provide a quantitative
analysis of this behavior and allow one to explain it on the
basis of a variational principle that can be directly deduced
from the fundamental laser equations [32].

This Letter shows that a complex physical system
responding to a simple variational principle can be recast
as an optimization problem. This notion of the world acting
as an analog computer has inspired scientists working
in many different fields. For instance, such vision led
Feynman to propose a universal simulator based on
quantum processes [53]. In general, the goal of such
optimization problems is to minimize an objective function
of many variables, which may be subject to additional
equality or inequality constraints. A random search of the
global minimum could take an enormously long time when
the number of variables is large—a concept exemplified by
Levinthal’s paradox in the theory of protein folding [54]—
since the number of local minima typically increases
exponentially with the dimension of the configuration
space. It is thus fascinating that frequency-modulated
combs solely responding to fundamental laws can succeed
as analog optimization problem solvers.
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