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We investigate the dynamics of quantum entanglement after a global quench and uncover a qualitative
difference between the behavior of the von Neumann entropy and higher Rényi entropies. We argue that the
latter generically grow sub-ballistically, as ∝

ffiffi
t

p
, in systems with diffusive transport. We provide strong

evidence for this in both a U(1) symmetric random circuit model and in a paradigmatic nonintegrable spin
chain, where energy is the sole conserved quantity. We interpret our results as a consequence of local
quantum fluctuations in conserved densities, whose behavior is controlled by diffusion, and use the random
circuit model to derive an effective description. We also discuss the late-time behavior of the second Rényi
entropy and show that it exhibits hydrodynamic tails with three distinct power laws occurring for different
classes of initial states.
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Introduction.—The far-from-equilibrium dynamics of
closed quantum many-body systems has been at the center
of much recent attention, both theoretically and experi-
mentally [1–5]. In systems where the eigenstate therma-
lization hypothesis [3,6,7] holds, the density matrix of a
finite subsystem ρA relaxes to a Gibbs state with an
extensive entropy that stems from the entanglement with
the rest of the system, making the dynamics of entangle-
ment integral to the understanding of equilibration. This
question has recently become amenable to experimental
probes in systems of cold atoms, through the measurement
of Rényi entropies, Sα ≡ ½1=ð1 − αÞ� log trðραAÞ. The theo-
retically most relevant of these is the von Neumann entropy,
Sα→1 ≡ −trðρA log ρAÞ. Experimentally, however, for large
subsystems only entropies with integer α ≥ 2 are currently
accessible [5,8–11]. It is therefore important to understand
how their behavior might differ from that of S1.
In generic clean systems, the von Neumann entropy is

expected to grow linearly in time for approximately homo-
geneous initial states (“global quenches”). This is understood
for integrable systems from a quasiparticle description
[12–15], but it also holds for thermalizing models [16],
where it has recently been described using a “minimal cut”
picture [17–19]. A generic linear growth of S2 has also been
proposed in Refs. [20,21], based on the ballistic spreading of
operators—this is consistent with existing results both in
integrable systems [22–24] and in models with no conser-
vation laws [25–28]. Here we argue that this picture changes
drastically in systems exhibiting diffusive transport of some
conserved quantity (spin, charge, energy, etc.) [29–31]:
we find that Sα>1 grows diffusively, as

ffiffi
t

p
. This arises

because entropies with α > 1 are sensitive to the presence of
a few anomalously large eigenvalues of the reduced density
matrix, while S1 is dominated by the many exponentially

small eigenvalues. The possibility of such qualitative
differences was discussed for global cat states in
Ref. [18]; herewe propose that it arisesmuchmore generally,
without the need to fine-tune the initial state.
Numerical results.—We consider a local random unitary

circuit with a conserved U(1) charge as a minimal model of
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(c) (d)

FIG. 1. (a) Growth of (annealed average) second Rényi entropy
in a spin-1=2, U(1) symmetric random circuit, averaged over all
product states. At long times the growth is diffusive (∝

ffiffi
t

p
). Inset:

The discrete time derivative ΔSðaÞ2 ðtÞ≡ SðaÞ2 ðtþ 1Þ − SðaÞ2 ðtÞ
decays as t−1=2. (b) Geometry of the random circuit and block
structure of the gates. (c) Rényi entropies of the tilted field Ising
model Eq. (1),S2 (solid lines) and 2S∞ (dots) show a similar
crossover to sub-ballistic growth, while (d) the von Neumann
entropy grows mostly linearly.
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local quantum dynamics with diffusive transport [32,33].
We take a spin-1=2 chain and evolve it with two-site unitary
gates that are block diagonal in the total z spin [Fig. 1(b)].
Each unitary consists of three independent Haar random
blocks, corresponding to the states f↑↑g, f↑↓;↓↑g, f↓↓g.
In every time step we apply such two-site gates first on all
even, then on all odd bonds of the chain, and the different
gates in the circuit are all independently chosen. Clearly,
this circuit conserves the total Pauli z component,

P
xZx.

We examine the circuit-averaged purity P̄, where the
purity is P ≡ e−S2 ¼ trðρ2AÞ. This defines the annealed

average Rényi entropy, SðaÞ2 ≡−logP̄, which lower bounds

the average, S2 ≥ SðaÞ2 . P̄ is represented as a classical
partition function, using the mapping derived in Ref. [33],
which we evaluate using standard tensor network methods
[34,35], making sure that the results are converged in both
system size and bond dimension. Moreover, we average
over all initial product states exactly. As shown in Fig. 1(a),
we find that at long times the entanglement grows as
SðaÞ2 ∝

ffiffi
t

p
. Note that the same quantity would grow linearly

if we removed the conservation law [25,26]; thus we
attribute its slow growth to diffusive transport.
Next, we consider the spin-1=2 Hamiltonian,

H¼ J
XL−1
r¼1

ZrZrþ1þ
XL
r¼1

ðhzZrþhxXrÞ−JðZ1þZLÞ; ð1Þ

known as the tilted field Ising model. The last term is
included to decrease boundary effects. We choose J ¼ 1,
hx ¼ ð5þ ffiffiffi

5
p Þ=8, and hz ¼ ð1þ ffiffiffi

5
p Þ=4, as the same

model was previously shown to have diffusive energy
transport and linear von Neumann entropy growth [16].
Figures 1(c) and 1(d) show the growth of different entropies,
averaged over N ¼ 50 (N ¼ 20) random product states for
system sizes L ¼ 12–24 (L ¼ 26). Here we average the
entropies, not their exponentials, unlike the random circuit
case. We observe a mostly linear growth of S1, as in
Ref. [16]. S2, however, has a crossover to sublinear growth
at long times.Although the timeswe can reach are limited by
finite system size, the long-time behavior is consistent with
S2 ∝

ffiffi
t

p
. The results become clearer when considering the

min-entropy, Sα→∞, which provides an upper bound on
Sα>1 ≤ ½α=ðα − 1Þ�S∞. We find that S∞ is less sensitive to
finite size effects, and exhibits a more pronounced crossover
towards

ffiffi
t

p
growth [dots in Fig. 1(c)]. Similar results hold

also for particular initial states, without averaging [36]. The
behavior of the random circuit and Hamiltonian models
leads us to conjecture that diffusive growth of Sα>1 is a
generic consequence of diffusive hydrodynamic transport.
In the following, we provide further justification of this
conjecture.
Heuristic argument.—We interpret our results in

terms of the following nonrigorous argument. Let us
focus on a Z-conserving discrete local time evolution,

UðtÞ ¼ Q
τ<tUðτ; τ þ 1Þ, on an infinite chain, and consider

the bipartite entanglement at a cut between sites x
and xþ 1. We write the time evolved state as a “sum
over histories”, jψðtÞi ¼ P

fσðτÞgAðfσðτÞgÞjσi, where
AðfσðτÞgÞ is the probability amplitude of a world history
fσðτÞgj0≤τ≤t in the Z basis. We split this sum into two parts:
(i) histories for which the sites x, xþ 1 have both spins up
at all times τ > tloc for some local equilibration time tloc ∼
Oð1Þ and (ii) all remaining paths. Let jϕ0ðtÞi and jϕ1ðtÞi
denote the normalized states corresponding to (i) and
(ii) respectively. Then jψðtÞi ¼ c0jϕ0ðtÞi þ c1jϕ1ðtÞi. By
construction, jϕ0i has an Oð1Þ Schmidt rank for a biparti-
tion across the bond x, xþ 1, accumulated before tloc.
Denoting this Schmidt rank by χ, one can then use the
Eckart-Young theorem [37,38] to lower bound the largest
Schmidt value of jψi as

χðΛψ
maxÞ2 ≥ jhϕ0jψij2 ¼ jc0 þ c1hϕ0jϕ1ij2: ð2Þ

We will now argue that if transport is diffusive, the rhs is
expected to decay slower than exponentially with time.
We first need to estimate the probability that the sites x,

xþ 1 remain in the state ↑↑ at all times t > tloc. The
simplest approximation is to treat every ↓ in the system as
an independently diffusing particle. In this case, the
probability that all particles that are to the left of x at
tloc remain on the same side is a product of the probabilities
for particles starting at different positions. The relevant
contribution comes from particles that are initially within
some region of size Oð ffiffiffiffiffiffi

Dt
p Þ near the entanglement cut,

where D is the diffusion constant. Therefore, we expect
the probability to decay at long times as jc0j2 ∝ e−γ

ffiffiffiffi
Dt

p
for

some constant γ [39].
To bound the overlap hϕ0jϕ1i, we can apply the Eckart-

Young theorem again, this time for jϕ1i, which gives
jhϕ0jϕ1ij2 ≤ χðΛϕ1

maxÞ2. Consequently, if jϕ1i, which cor-
responds to typical histories, has Rényi entropies Sα>1 that
grow faster than

ffiffi
t

p
, then the second term on the rhs of

Eq. (2) will be negligible at long times compared to c0,
resulting in χðΛψ

maxÞ2 ≳ e−γ
ffiffiffiffi
Dt

p
. If Λϕ1

max ∼ e−
ffiffi
t

p
, then there

is, in principle, a possibility of cancellation between the
two terms, such that the rhs of Eq. (2) decays faster then
∼e−

ffiffi
t

p
; however, this would be highly fine-tuned and we

see no sign of such cancellation when computing the rhs in
the random circuit model.
This argument implies that at long times there should be

a growing distance between the largest Schmidt value,
Λmax ≡ e−S∞=2 ∼ e−γ

ffiffiffiffi
Dt

p
, and typical ones which we still

expect to be exponentially small, ∼e−vt, in accordance
with the linear growth of S1 [16]. As mentioned previously,
the former upper bounds Rényi entropies, Sα>1 ≤
½α=ðα − 1Þ�S∞. This shows that at long times, t ≫ v2=D,
all α > 1 entropies are controlled by the largest Schmidt
value, making their growth diffusive, provided that all
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degrees of freedom couple to some conserved quantity. The
time for this sub-ballistic growth to set in depends also on
the Rényi index, diverging in the limit α → 1. The von
Neumann entropy itself is unconstrained by S∞, dominated
instead by the many exponentially small Schmidt values,
leading to its linear growth.
While the above argument is presented in the language of

spin conservation, we expect it to generalize to energy
conserving systems in the form of rare events where the
time evolved state locally resembles the ground state [40].
This is in agreement with our numerical results in Fig. 1(c).
Effective model.—To get a further analytical handle on

this problem, we return to our random circuit model and
modify it along the lines of Ref. [32], adding an extra,
nonconserved q-state system to each site. This makes the
size of each Haar random unitary larger by a factor of q2,
allowing us to derive an effective model that governs the
evolution of SðaÞ2 in the large q limit. As we shall see, the
result decomposes into the sum of two contributions: a ∝ t
part from the nonconserved degrees of freedom, and a ∝

ffiffi
t

p
part associated to the conserved spins.
To begin, note that the purity can be written as the

expectation value of an operator on two identical copies of
the original system [8,26,41,42]. Imagine two copies of a
single site, with Hilbert space H ⊗ H, and define the one-
site SWAP operator F , such that F ðjii ⊗ jjiÞ≡ jji ⊗ jii,
where fjiig is a basis in H. Then the half-chain purity is
PðxÞ ¼ trðF ðxÞ½ρ ⊗ ρ�Þ≡ hF ðxÞi, where F ðxÞ≡Q

≤xF
is a string of SWAP operators, acting on one half of the
entanglement cut [Figs. 2(a) and 2(b)]. Instead of evolving
the state, we can therefore evolve the operatorF ðxÞ in time.
Averaging over a random gate on sites x, xþ 1, to leading
order in 1=q it evolves as [36]

F ðxÞ → ð2qÞ−1
X
y¼x�1

F ðyÞ þ F̃ xðyÞ; ð3Þ

where we have introduced new “two-copy” operators,

F̃ xðyÞ≡ ðZx;xþ1 ⊗ Zx;xþ1ÞF ðyÞ; ð4Þ

with Zx;xþ1 ≡ ðZx þ Zxþ1Þ=2, and the tensor product refer-
ring to the two copies of the system. These are similar to
F ðxÞ, but multiplied by the Z operators that measure the
conserved spin on sites near the entanglement cut.
To see how the entanglement evolves, one also needs

equations of motion for F̃ xðyÞ. This can be done analo-
gously, by averaging over two-site gates, resulting in the
following effective model. The operators in Eq. (4), and
their subsequent circuit-averaged evolution, may be
expressed as a sum of dressed SWAP operators of the formQ

yðZnðrÞy
y ⊗ Z

nðbÞy
y ÞF ðx0Þ, where fnðr;bÞy ¼ 0; 1g. We refer to

fnðr;bÞy g as configurations of “red” and “blue” particles,
while x0 (the end point of the SWAP string) is called the “cut
position”. Apart from an overall suppression factor of 2=q
in each step, the circuit-averaged dynamics gives a Markov
process on configurations defined by these variables. This
effective Markov dynamics has the following properties:
away from the cut, the particles independently obey
diffusion with hard-core interactions, conserving the num-
ber of each species. The cut itself also diffuses, moving
one site either to the left or the right, while emitting
and absorbing an even number of particles at each step
[Fig. 2(d)]. One can show that the probability of emission
versus absorption decreases with the number of particles on
the two sites directly at the cut, changing sign at half
filling [36].
The SWAP string and both types of particles evolve as

unbiased random walks; therefore, by time t we expect
them to occupy a region of width lðtÞ ∝ ffiffi

t
p

. Monte Carlo
simulations of the stochastic dynamics show [Fig. 2(e)] that
the particle densities are Gaussian around x. We therefore
take a mean field approximation and write the probability
of a string ending at x and a distribution of particles
fnðr;bÞy ¼ 0; 1g as

pðx; nðrÞ; nðbÞÞ ∝ e−x
2=2lðtÞ2e−½1=2lðtÞ

2�
P

y
ðnðrÞy þnðbÞy Þy2 ; ð5Þ

if
P

yðnðrÞy þ nðbÞy Þ is even, and zero otherwise. With this
ansatz, one can evaluate the half-chain purity at time t. For
translation invariant product states, the result reads

PðtÞ ∝
�
2

q

�
tY

y

�
1 −

1 − jhZyij
1þ ey

2=2lðtÞ2

�
2

: ð6Þ

This product has relevant contributions only from a window
of jyj≲ ffiffi

t
p

; hence, it decays as e−γ
ffiffi
t

p
. Note that γ is larger

when jhZyij is smaller. By expanding each term in

(a)

(b)

(d) (e)

(c)

FIG. 2. Effective model at q → ∞. (a) The purity P, written in
terms of the state ρ as a matrix product operator. (b) This can be
rewritten by introducing the SWAP operator F. (c) Half-chain
“SWAP string” F ðxÞ, along with a few of the terms on the rhs
of Eq. (3), with red and blue particles representing local Zx
operators. (d) These particles obey a random walk with hard-core
interactions, spreading out diffusively, which (e) leads to a
Gaussian density profile.
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e−y
2=2lðtÞ2 , we can approximate the product as

≈e−
ffiffiffiffi
2π

p ð1−jhZijÞlðtÞ, which is in good agreement with
Monte Carlo results, at least away from hZi ≈ 0. Note that
Eq. (6) looks very similar to the probability of rare events
from our heuristic argument in the simplest approximation
of independently diffusing particles.

Using Eq. (6), at large qwe get SðaÞ2 ¼ logðq=2Þtþ a
ffiffi
t

p
,

with a ∼Oð1Þ. Here, logðq=2Þ is exactly the large q limit of
vEðqÞ ¼ log½ðqþ 1=qÞ=2�, the entanglement velocity of a
nonsymmetric random circuit with q states per site [25,26].
Moreover, the linear in t term is independent of the initial
state. This suggests the following interpretation: there is an
entanglement vEðqÞt coming entirely from nonconserved
degrees of freedom, while the conserved spins are respon-
sible for the ∝

ffiffi
t

p
term. This is supported by numerical

results [36], which show that SðaÞ2 ðtÞ − vEðqÞt has only
weak q dependence and grows as

ffiffi
t

p
for any q, including

the original model with q ¼ 1, where SðaÞ2 is purely
diffusive [Fig. 1(a)]. This is true despite the ballistic spread
of local operators [32,33], showing that recent arguments
[20,21,25] for exponential decay of P fail in the present
context, and subtle correlations between the spreading of
different operators cannot be neglected. Our results also
suggest that the minimal cut picture of entanglement
growth [18] does not accurately capture the behavior of
Sα>1 [43].
Long-time tails.—Diffusive modes also have a strong

influence on the long-time behavior of finite subsystems,
which we turn to next. The entanglement eventually
saturates to an equilibrium value predicted by the appro-
priate Gibbs ensemble, provided the eigenstate thermal-
ization hypothesis holds and the initial state clusters
[1,3,6,7]. We now show that the approach of S2 to this
thermodynamic value is also affected by diffusion and
shows long-time hydrodynamic tails. Interestingly, we find
that the nature of these tails depends strongly on the initial
conditions, leading to the appearance of three different
power laws, t−1=2, t−1, and t−3=2. In particular, we uncover
a difference between states at zero and finite chemical
potential.
We take a spin-1=2 chain and rewrite the reduced density

matrix of a small subsystem of l sites by inserting a
complete basis of operators σμ, given by products of local
Pauli operators acting on the subsystem [20]. This yields
S2 ¼ l log 2 − logð1þP

μhσμ2iÞ, where the identity is
excluded from the sum. Let hδσμi≡ hσμi − hσμieq denote
the deviation from equilibrium. Then at long times

jS2 − S2;eqj ∝
X
μ

ð2hσμieqhδσμi þ hδσμi2Þ: ð7Þ

Thus the long-time tails that describe how expectation
values equilibrate appear directly in the Rényi entropy.
One immediate consequence of Eq. (7) is that the

hydrodynamic tails can differ between states at half filling

and away from half filling. At precisely half filling, the
leading order term is hδσμi2, while away from half filling
hσμieqhδσμi is expected to dominate. Generically, hydro-
dynamic observables in d dimension should decay as t−d=2

[29–31,44], with subleading corrections Oðt−3d=4Þ.
Therefore, we generically expect a saturation as ∝ t−d

for states at half filling (infinite temperature) and ∝ t−d=2

otherwise. However, this expectation can change for certain
initial states, where all hydrodynamic variables have
hδσμi ¼ 0 initially. In this case one expects the leading
diffusive tail to vanish and subleading corrections to take
over. In particular, in the 1D random circuit model one can
argue [36] that the leading contribution for translation
invariant product states should be of order t−3=2.

We observe these three distinct power laws in SðaÞ2 for the
spin-1=2 random circuit, as shown in Fig. 3(a). We find that
Néel-like states (j↑↑↓↑↑↓…i) with less then half filling
exhibit an overshooting effect, approaching their equili-
brium value from above, as t−1=2. Finitely correlated states

at half filling ½ðjβi ∝ eβ
P

L−1
r¼0

ZrZrþ1ðj↑i þ j↓iÞ⊗L� saturate
as t−1, and tilted ferromagnetic states (jθi≡ eiθ

P
L
r¼1

Yr j↑i)
as t−3=2. We also provide evidence of the t−3=2 tail for
random product states in the tilted field Ising Hamiltonian
Eq. (1), shown in Fig. 3(b).
Discussion.—Our results reveal a previously overlooked

qualitative difference between the von Neumann and α > 1
Rényi entropies. We gave a heuristic argument, indicating
that the latter are strongly influenced by local quantum
fluctuations which can lead to diffusive growth for the
entropy in systems with diffusive transport. We presented
evidence for this in two cases: a random circuit model and a
thermalizing Hamiltonian. Our results indicate that diffu-
sion leads to a separation of scales, where the half-chain
density matrix contains a few largest eigenvalues that decay
slowly and become well separated from the bulk of the
spectrum made up by exponentially small eigenvalues: S2
is dominated by the former, while S1 by the latter, such that

(a) (b)

FIG. 3. (a) Saturation of SðaÞ2 for a four-site subsystem in the
spin-1=2 random circuit for different initial states. States away or
at half filling generically saturate as t−1=2; t−1, respectively. States
with hydrodynamic variables in equilibrium at all times saturate
with subleading exponent t−3=2. (b) The same t−3=2 saturation is
present for random product states in the tilted field Ising model
Eq. (1) (three-site subsystem, averaged over 50 initial states).
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they provide insight into different aspects of thermalization.
In particular, S1 and Sα>1 reveal distinct timescales of
thermalization, scaling, respectively, as ∝ l and ∝ l2 with
subsystem size l.
We expect our results to generalize to higher dimensions.

In that case, the SWAP string becomes a “membrane”
[17–19]. One can generate a 2D time evolution using a
random circuit of two-site gates [26], in which case our
Eq. (3) remains valid, with the membrane emitting Zx
operators that diffuse on the 2D lattice. A generalization of
our heuristic argument would also suggest a similarly sub-
ballistic growth for the Rényi entropy. It would be
interesting to see if effects like this could show up in
holographic calculations, by extending the results of
Refs. [19,45] to Rényi entropies, or by refining the upper
bound derived for Sachdev-Ye-Kitaev chains in Ref. [46].
It is an open question whether diffusion also affects the

early-time growth of S1, e.g., the form of subleading
corrections. While slow relaxation of S1 due to diffusion
has been observed numerically [47], whether the rich
variety of initial state-dependent power laws appear there
also warrants further study. Another avenue for future
investigation is in the field of disordered systems, where
even the von Neumann entropy is expected to grow sub-
ballistically, while transport becomes subdiffusive [48–50],
eventually leading to many-body localization at strong
disorder. Comparison of von Neumann and Rényi entropies
could give further insight into the dynamics in these
different regimes.
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Note added.—Recently, a follow-up work [38] appeared,
which provided a proof of sub-ballistic growth of Sα>1 for
charge-conserving unitary circuits, under slightly different
assumptions, and for a specific set of initial states. This
work made us aware of the Eckart-Young theorem, which
allowed us to tighten our heuristic argument, replacing one
of its underlying assumptions with a milder condition.
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