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In experimentally realistic situations, quantum systems are never perfectly isolated and the coupling to
their environment needs to be taken into account. Often, the effect of the environment can be well
approximated by a Markovian master equation. However, solving this master equation for quantum many-
body systems becomes exceedingly hard due to the high dimension of the Hilbert space. Here we present an
approach to the effective simulation of the dynamics of open quantum many-body systems based on
machine-learning techniques. We represent the mixed many-body quantum states with neural networks in
the form of restricted Boltzmann machines and derive a variational Monte Carlo algorithm for their time
evolution and stationary states. We document the accuracy of the approach with numerical examples for a
dissipative spin lattice system.
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The description of interacting quantum many-body sys-
tems presents a formidable challenge for theoretical and
numerical approaches. A pure many-body quantum state is
described by the wave function, whose complexity grows
exponentially with the number of constituents. This chal-
lenge is even more pronounced for mixed quantum states,
where the fundamental object describing all physical proper-
ties is the density matrix, whose number of degrees of
freedom scales quadratically with the dimension of the
Hilbert space [1]. Yet the description of experiments under
realistic conditions requires modeling in terms of density
matrices as the systems of interest are never perfectly
isolated from their environment. The huge number of
degrees of freedom of pure and mixed states, however,
renders an exact description of large systems in general
infeasible (see [2,3] for exceptions with exact solutions),
even if one resorts to numerical approaches.
To meet this quantum complexity challenge, several

approximate approaches have been developed. Tensor net-
works and the density matrix renormalization group [4,5]
become efficient descriptions whenever the amount of
entanglement contained in the modeled states is restricted.
Despite substantial effort [6], these methods however still
suffer from limitations in systems with more than one lattice
dimension. For two-dimensional systems, novel real-space
renormalization-based approaches are among the most
promising existing tools [7], although their application to
large systems is at present at the forefront of research activity
[8]. Stochastic many-body techniques, such as quantum
Monte Carlo (QMC) methods [9,10], rely on sampling a
number of physically relevant configurations or perform an
efficient compression of the quantum state. However, QMC

approaches are effective only for a restricted number of open
quantum systems and regimes [11,12], and a severe sign
problem typically emerges in the simulation of dissipative
dynamics.
Recently, machine-learning inspired approaches and

parametrizations of wave functions in terms of neural
networks have been introduced [13]. This variational rep-
resentation, dubbed neural-network quantum states (NQS),
has been used to study both system at equilibrium [13–17],
and out of equilibrium, in the context of unitary dynamics of
pure states [18–20]. The connection between NQS and
tensor network representations has also been explored
[15,21,22]. While in the past years there have been several
methodological developments to study open quantum sys-
tems using tensor network representations [23–30], the
description of mixed states with NQS has been so-far
explored for data-driven tomographic purposes [31–33].
For modeling quantum experiments, particularly for open

many-body systems [34–38], there is a strong need for
efficient and accurate approaches, especially in more than
one lattice dimension, where tensor networks face difficul-
ties. To this end, it is instrumental to develop a flexible and
scalable numerical approach to study mixed state dynamics
or stationary states of dissipative dynamics. Central to this
goal is the ability to use variational density-matrix states not
facing the entanglement problem, and flexible enough to
describe correlations and many-body effects beyond mean-
field [39,40] and cluster approaches [41,42].
Here we present a machine-learning approach to the

simulation of dissipative quantum dynamics and its sta-
tionary states. Our approach uses a neural-network para-
metrization for the quantum density matrix [31] and a
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stochastic learning method to approximate its dynamics in a
time-dependent variational Monte Carlo approach [43]. Our
approach is suitable to model nonunitary dynamics of
quantum systems with many degrees of freedom in a variety
of settings. These include numerical characterizations of
near term quantum computers where decoherence processes
due to their imperfections are taken into account [44]. A
second field of applications is the investigation of stationary
state quantum phases and phase transitions, which have
attracted increasing interest in recent years [34–38,45,46].
Problem and parametrization.—Our aim is to solve the

quantum master equation of Lindblad form,

_ρ ¼ −i½H; ρ� þ
X

j

γj
2
ð2cjρc†j − c†jcjρ − ρc†jcjÞ; ð1Þ

where ρ is the density matrix of the system, H its
Hamiltonian, and the γj and cj the dissipation rates and
jump operators of its dissipation. The index j runs over all
dissipation channels. For a large class of models, there is
however only one dissipation channel per lattice site and we
restrict our treatment to this case, where j thus labels the
lattice sites. As an example, we consider a dissipative and
anisotropic Heisenberg model for a lattice of N spin-1=2
degrees of freedom that has attracted significant interest
recently [41].
To find an efficient and accurate approximation to the

dynamics of Eq. (1), we leverage the idea that artificial
neural networks can be used to provide compact repre-
sentations of quantum states [13]. Specifically, we use a
parametrization of the density matrix in terms of complex-
valued restricted Boltzmann machines (RBM), similar to
the one introduced in Ref. [31]. Figure 1 shows a sketch of
the specific neural-network architecture used in this work.
It most prominently features three sets of hidden units, hðlÞ,
hðrÞ and hðmÞ, whose role is to mediate correlations among,
respectively, column degrees of freedom of the density

matrix, row degrees of freedom, and mixed correlations
between the two. Because of the bipartite structure of the
RBM interactions, the hidden units can be integrated out
exactly, resulting in a parametrization that guarantees a
Hermitian and positive semidefinite density matrix [31],

ρ⃗l;r⃗ ¼ exp

�XN

j¼1

ðajlj þ a�jrjÞ
�YM

k¼1

X k

ỸM

p¼1

Yp

Xk ¼ cosh

�
bk þ

XN

j¼1

Wk;jlj

�
cosh

�
b�k þ

XN

j¼1

W�
k;jrj

�

Yp ¼ cosh

�
cp þ c�p þ

XN

j¼1

ðUp;jlj þ U�
p;jrjÞ

�
; ð2Þ

where the vector indices ⃗l ¼ ðl1; l2;…Þ and r⃗ ¼ ðr1; r2;…Þ
contain the left (right) indices ljðrjÞ for all lattice sites j, and
the variational parameters are the complex-valued weights
Wk;j,Up;j and biases aj, bk and cp. Analogously to the pure
state case, increasing the number of hidden units,M and M̃,
guarantees more expressive representations of the density
matrix. Given the RBM parametrization of the density
matrix, it remains to be determined how to find an approxi-
mate solution of the Lindblad master equation. The approxi-
mation of thedynamics generated byEq. (1) can be recast as a
variational optimization problem that can be approached via
a suitable extension of the stochastic reconfigurationmethod
[47] and the time-dependent variational Monte Carlo [43] to
the dissipative case.
Stochastic reconfiguration for Liouvillians.—It is con-

venient to write the density matrix ρ as a vector ρ⃗ such
that the right-hand side of Eq. (1) can be expressed as the
action of a linear operator on ρ⃗, i.e., ∂tρ⃗ ¼ Lρ⃗, where L is
the Liouvillian superoperator that, in contrast to the
Hamiltonian H, is not Hermitian.
According to Eq. (2), the density matrix ρ⃗ is parametrized

by a set of ðN þ 1ÞðM þ M̃Þ þ N complex variational
parameters. In the following, we use the abbreviate notation
α⃗ to indicate the ensemble of these variational parameters.
Most notably, the real vector α⃗ contains both imaginary and
real parts of the variational parameters that are treated
independently. The time derivative of the variational ρ
can in turn be expressed in terms of the time derivative of
the variational parameters as

∂tρ⃗ ¼
X

k

_αkOkρ⃗; ð3Þ

where Ok denote diagonal matrices whose nonzero matrix
elements read ½Ok �⃗l;r⃗;⃗l;r⃗ ¼ ∂ lnðρ⃗l;r⃗Þ=ð∂αkÞ. To get the best
approximation to the dynamics of the density matrix, our
goal is to find a closed equation of motion for the variational
parameters, namely, the time dependence αðtÞ. To this end,
at each instant in time we consider the difference between
the exact Lindblad infinitesimal time evolution and the
approximate variational evolution,

FIG. 1. Sketch of the employed neural network. The visible
layer is in green and hidden layers are in light brown and purple.
There is a hidden layer for the row indices li and the column
indices ri of ρ (i ¼ 1; 2;…; N) with hidden neurons hlj and hrj
(j ¼ 1;…;M). A further hidden layer with neurons hmk
(k ¼ 1;…; M̃) is responsible for the mixing, cf., [31].
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δ ¼
����
X

k

_αkOkρ⃗ − Lρ⃗

����
2

2

; ð4Þ

where the time derivatives of the variational parameters, _αk,
are to be determined. Minimization of δ with respect to _αk
leads to the system of equations

X

p

Sk;p _αp ¼ fk; ð5Þ

where

Sk;p ¼ ρ⃗†O†
kOpρ⃗þ ρ⃗†O†

pOkρ⃗; ð6Þ

fk ¼ ρ⃗†O†
kLρ⃗þ ρ⃗†L†Okρ⃗; ð7Þ

and it is easy to show that the solutions of Eq. (5) are indeed
local minima of δ; see Supplemental Material [48].
Alternatively to the 2-norm in Eq. (4), one can also use
the Fubini-Study norm; see Supplemental Material [48].
Equation (5) can be written as a first order differential
equation,

∂tα⃗ ¼ S−1f⃗; ð8Þ

where Sk;p are thematrix elements of thematrixS and fk the

elements of the vector f⃗.
Stochastic sampling.—The expressions in Eqs. (6) and

(7) cannot be exactly computed for systems with a large
number of quantum particles. However, those quantum
expectations can be conveniently interpreted as statistical
expectation values over the probability distribution

pð⃗l; r⃗Þ ¼ jρ⃗l;r⃗j2; ð9Þ

in analogy to the concept in static and time-dependent
variational Monte Carlo. The elements of S and f⃗ can thus
also be written as

Sk;p ∝ RehO†
kOpip and fk ∝ RehO†

kL
resip; ð10Þ

where h…ip denotes a statistical expectation value of the
probability distribution p as in Eq. (9), and we have
introduced the following estimator for the Liouvillian,

Lres
l⃗1;r⃗1;l⃗2;r⃗2

¼
X

l⃗2;r⃗2

Ll⃗1;r⃗1;l⃗2;r⃗2
ρl⃗2;r⃗2

ρl⃗1;r⃗1
: ð11Þ

In addition to having a stochastic strategy for solving the
variational equations of motion, it is also important to
provide an efficient scheme to compute expectation values
of physical observables. Consider the expectation value of a
generic observable X,

hXi ¼ TrfXρg ¼
X

⃗l;m⃗

X ⃗l;m⃗ρm⃗;⃗l: ð12Þ

Estimates of hXi can be obtained in this case as statistical
averages over the probability distribution qð⃗lÞ ¼ ρ⃗l;⃗l, such
that

hXi ≃ hXlociq; Xloc
⃗l;⃗l

¼
X

m⃗

X ⃗l;m⃗ρm⃗;⃗l

ρ⃗l;⃗l
: ð13Þ

In all cases of physical relevance, observables X have a
sparse representation, and computing the estimator Xloc

⃗l;⃗l
can

be efficiently realized. Notice that, while possible, sam-
pling over pð⃗l; m⃗Þ to compute physical expectation values
would entail a much less efficient statistical estimator for
hXi. This would further require one to stochastically
estimate the normalization factor, which is instead auto-
matically taken into account when sampling from qð⃗lÞ.
In this work we use two independent Markov-chain
Monte Carlo schemes to obtain samples both from
pð⃗l; r⃗Þ and from qð⃗lÞ at each instant of time, as explained
in the Supplemental Material [48].
Results.—To test the accuracy of our method, we

consider an anisotropic Heisenberg model with
Hamiltonian

H ¼
XN

j¼1

Bσzj þ
X

hj;li

X

a¼x;y;z

Jaσajσ
a
l ; ð14Þ

where
P

hj;li denotes the sum over all nearest neighbors,
and dissipator

D½ρ� ¼ γ

2

XN

j¼1

ð2σ−j ρσþj − σþj σ
−
j ρ − ρσþj σ

−
j Þ: ð15Þ

Whereas our method can be applied equally to one- and
two-dimensional lattices, we here present examples for
one-dimensional lattices where we can compare the results
to matrix product state (MPS) simulations. We consider two
applications. First we compare the time evolution of a
density matrix as obtained from Eq. (8) to the exact time
evolution of the density matrix for a small size model where
the full master equation (1) can be numerically integrated.
Then we show that our method correctly finds stationary
states for a larger model that can no longer be fully
integrated but where a MPS representation of ρ [49] allows
one to find the stationary state.
To quantify the accuracy of a time evolution for ρ as

obtained from Eq. (8), we consider two quantities. (i) The
average deviation of the matrix element of ρ from the exact
density matrix ρe is given by
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δρ ¼ 1

22N

X

j;l

jρj;l − ρej;lj2 ¼
kρ − ρek22

22N
; ð16Þ

where kxk is the 2-norm of a matrix x. (ii) To get an
accuracy test in terms of physical observables we compare
the magnetization for our approximation

mz
ml ¼

1

N

X

j

hσzji ð17Þ

to the magnetization for an exact solution mz
ex ¼

ð1=NÞPjhσzjiexact.
Results for a linear chain with N ¼ 5 spins and periodic

boundary conditions are presented in Fig. 2 and clearly
show that the parametrization of the density matrix ρ in
terms of the neural network in Fig. 1 provides a very good
approximation to the dissipative quantum dynamics of
mixed states.
To show that our method correctly finds stationary states

for models where the full density matrix can no longer be
computed, we test whetherLρ ¼ 0. To this end we compute

δL ¼ hjLresjip: ð18Þ

Since δL ¼ P
l⃗1;r⃗1

jρl⃗1;r⃗1kðLρÞl⃗1;r⃗1 j this tests whether all
matrix elements ðLρÞl⃗1;r⃗1 vanish. Moreover, the measure δL
weights the matrix elements of Lρ according to the
relevance for the state ρ and is very economic to compute.
δL can thus be computed as a test for the convergence to the
stationary state, even if the properties of the latter are
completely unknown. Notice that since δL can be effi-
ciently estimated (as well as other related quantities such as
jLρj2 ∝ hjLresj2ip, at the same cost of applying L once, it

is, in principle, possible to devise an alternative variational
optimization scheme that directly minimizes δL, if only the
stationary state is of interest.
In addition to computing δL, we also test whether the

magnetization, see Eq. (17), approaches the steady state
magnetization mz

SS ¼ limt→∞ð1=NÞPjhσzji, which we
obtain from an integration with a MPS representation of
the density matrix ρ. Results for the approach to the
stationary state of a chain with N ¼ 16 spins and open
boundary conditions are presented in Fig. 3 and show that
the stationary state is found with high accuracy. For finding
stationary states, we make use of the fact that the para-
metrization (2) always guarantees a physically valid state.
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FIG. 2. Results for a chain of five spins with periodic boundary conditions and B ¼ 10γ, Jx ¼ 20γ, Jy ¼ 0, and Jz ¼ 10γ.
M ¼ M̃ ¼ 20, the sample size was NS ¼ 106, and the time step of fourth order Runge-Kutta integration was δt ¼ 2 × 10−5γ−1.
(a) Magnetization for the neural-network approximation, hσzi (blue) and the exact solution, hσzie (orange). (b) Log plot of difference
between hσzi and hσzie. (c) Average deviation of the matrix element of ρ from the exact density matrix ρe as given by Eq. (16).

102 103 104 105

iteration steps

10-6

10-4

10-2

100

|m
z m

l -
 m

z ss
|

102 103 104 105

iteration steps

10-4

10-3

10-2

10-1

100

101

 L

FIG. 3. Results for a chain of 16 spins with open boundary
conditions B ¼ 10γ, Jx ¼ γ, Jy ¼ 0, and Jz ¼ 0. M ¼ M̃ ¼ 12,
the sample size was NS ¼ 2 × 105, and a second order Runge-
Kutta integration with adaptive step size was used. (a) Difference
between mz

ml, see Eq. (17), and mz
SS ¼ −15.9286 as found from

an integration with MPS, and (b) magnitude of Lρ as quantified
by δL given in Eq. (18).
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If we do not aim at correctly modeling the dynamics for all
times, we can thus choose the integration time step larger
and still find convergence to the correct stationary state.
The example presented here features a moderately

correlated state where a MPS representation of the steady
state with bond dimensionD ¼ 17 suffices to computemz

SS
with an accuracy of 10−4. Hence, the MPS representation
here requires 4½ðN − 2ÞD2 þ 2D� ¼ 16320 parameters
(the prefactor 4 is the physical dimension for mixed states
of spin systems), whereas the neural-network representa-
tion achieves a comparable approximation with only
ðN þ 1ÞðM þ M̃Þ þ N ¼ 424 parameters. Scenarios with
stronger spin-spin interactions would require more varia-
tional parameters and larger sample sizes, increasing the
numerical effort of the method.
Conclusions.—We have introduced a neural-network-

based approach to numerically modeling the quantum
dynamics and stationary quantum states of open or dis-
sipative quantum many-body systems. Our results show
that both the dynamics and stationary states of such systems
can be obtained with high accuracy. In this work we have
shown one-dimensional systems, in order to provide bench-
marks with existing approaches. Several extensions of our
approach can be envisaged for future research. From the
point of view of applications, the study of two-dimensional
lattices does not present conceptual difficulties, and rep-
resents an interesting opportunity for our method. From the
methodological point of view, schemes targeting only the
stationary state can also be efficiently implemented, using
the same ideas introduced to compute δL in this work.

M. J. H. thanks Heriot-Watt University for support.
We acknowledge stimulating discussions with V. Savona,
C. Ciuti, F. Vicentini, and G. Torlai.

Note added.—Recently, Refs. [50–52] appeared, which
discuss similar strategies to study stationary states of open
quantum many-body systems by using complex-valued
neural networks.

[1] H.-P. Breuer, The Theory of Open Quantum Systems
(Oxford University Press, Oxford, USA, 2007).

[2] T. Prosen, Exact Nonequilibrium Steady State of a Strongly
Driven Open xxz Chain, Phys. Rev. Lett. 107, 137201
(2011).

[3] T. Prosen, Exact Nonequilibrium Steady State of an Open
Hubbard Chain, Phys. Rev. Lett. 112, 030603 (2014).

[4] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Ann. Phys. (Amsterdam)
326, 96 (2011).

[5] F. Verstraete, V. Murg, and J. I. Cirac, Matrix product
states, projected entangled pair states, and variational
renormalization group methods for quantum spin systems,
Adv. Phys. 57, 143 (2008).

[6] A. Kshetrimayum, H. Weimer, and R. Orús, A simple tensor
network algorithm for two-dimensional steady states, Nat.
Commun. 8, 1291 (2017).
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